[1]
|
C. J. Bampfylde and M. A. Lewis, Biological control through intraguild predation: Case studies in pest control, invasive species and range expansion, Bull. Math. Biol., 69 (2007), 1031-1066.
doi: 10.1007/s11538-006-9158-9.
|
[2]
|
S. Diehl, Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships, Oikos, 68 (1993), 151-157.
doi: 10.2307/3545321.
|
[3]
|
S. Diehl, Direct and indirect effects of omnivory in a littoral lake community, Ecology, 76 (1995), 1727-1740.
doi: 10.2307/1940706.
|
[4]
|
S. Diehl and M. Feissel, Effects of enrichment on threelevel food chains with omnivory, Am. Nat., 155 (2000), 200-218.
doi: 10.1086/303319.
|
[5]
|
S. Diehl and M. Feissel, Intraguild prey suffer from enrichment of their resources: a microcosm experiment with ciliates, Ecology, 82 (2001), 2977-2983.
doi: 10.2307/2679828.
|
[6]
|
M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272.
doi: 10.1111/j.1529-8817.1973.tb04092.x.
|
[7]
|
J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.
doi: 10.1007/978-1-4615-6397-6.
|
[8]
|
J. P. Grover, Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model, Am. Nat., 138 (1991), 811-835.
|
[9]
|
J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, Am. Nat., 178 (2011), 124-148.
doi: 10.1086/662163.
|
[10]
|
J. P. Grover, S. B. Hsu and F.-B. Wang, Competition between microorganisms for a single limiting resource with cell quota structure and spatial variation, J. Math. Biol., 64 (2012), 713-743.
doi: 10.1007/s00285-011-0426-4.
|
[11]
|
J. P. Grover and F.-B. Wang, Competition for one nutrient with internal storage and toxin mortality, Math. Biosci., 244 (2013), 82-90.
doi: 10.1016/j.mbs.2013.04.009.
|
[12]
|
J. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society Providence, RI, 1988.
|
[13]
|
W. M. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellers for semidynamical systems, J. Dynam. Differential Equations, 13 (2001), 107-131.
doi: 10.1023/A:1009044515567.
|
[14]
|
R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, Am. Nat., 149 (1997), 745-764.
doi: 10.1086/286018.
|
[15]
|
S. B. Hsu, S. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.
doi: 10.1137/0132030.
|
[16]
|
S. B. Hsu, J. Jiang and F. B. Wang, On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat, J. Differential Equations, 248 (2010), 2470-2496.
doi: 10.1016/j.jde.2009.12.014.
|
[17]
|
S. B. Hsu, K.-Y. Lam and F. B. Wang, Single species growth consuming inorganic carbon with internal storage in a poorly mixed habitat, J. Math. Biol., 75 (2017), 1775-1825.
doi: 10.1007/s00285-017-1134-5.
|
[18]
|
S. B. Hsu, J. P. Shi and F. B. Wang, Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 3169-3189.
doi: 10.3934/dcdsb.2014.19.3169.
|
[19]
|
S. B. Hsu and P. Waltman, On a system of reaction-diffusion equations arising from competition in an unstirred Chemostat, SIAM J. Appl. Math., 53 (1993), 1026-1044.
doi: 10.1137/0153051.
|
[20]
|
P. Magal and X. -Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM. J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173.
|
[21]
|
J. Mallet-Paret and R. D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index, J. Fixed Point Theor. Appl., 7 (2010), 103-143.
doi: 10.1007/s11784-010-0010-3.
|
[22]
|
R. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321 (1990), 1-44.
doi: 10.2307/2001590.
|
[23]
|
L. Mei, S. B. Hsu and F.-B. Wang, Growth of single phytoplankton species with internal storage in a water column, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 607-620.
doi: 10.3934/dcdsb.2016.21.607.
|
[24]
|
F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, J. Phycol., 23 (1987), 137-150.
doi: 10.1111/j.1529-8817.1987.tb04436.x.
|
[25]
|
H. Nie, S.-B. Hsu and F.-B. Wang, Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage, J. Differential Equations, 266 (2019), 8459-8491.
doi: 10.1016/j.jde.2018.12.035.
|
[26]
|
H. Nie, J. H. Wu and Z. G. Wang, Dynamics on the Unstirred Chemostat Models, Science Press, Beijing, 2017.
|
[27]
|
G. A. Polis and et al, The ecology and evolution of intraguild predation: Potential competitors that eat each other, Annu. Rew. Ecol. Syst., 20 (1989), 297-330.
doi: 10.1146/annurev.es.20.110189.001501.
|
[28]
|
G. A. Polis and R. D. Holt, Intraguild predation: the dynamics of complex trophic interactions, Trends Ecol. Evol., 7 (1992), 151-154.
doi: 10.1146/annurev.es.20.110189.001501.
|
[29]
|
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, 1984.
doi: 10.1007/978-1-4612-5282-5.
|
[30]
|
J. A. Rosenheim, H. K. Kaya, L. E. Ehleret, J. J. Marois and B. A. Jaffee, Intraguild predation among biological control agents: Theory and evidence, Biol. Control, 5 (1995), 303-335.
doi: 10.1006/bcon.1995.1038.
|
[31]
|
H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society Providence, RI, 1995.
|
[32]
|
H. L. Smith and P. Waltman, Competition for a single limiting resouce in continuous culture: the variable-yield model, SIAM J. Appl. Math., 54 (1994), 1113-1131.
doi: 10.1137/S0036139993245344.
|
[33]
|
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, 1995.
doi: 10.1017/CBO9780511530043.
|
[34]
|
H. L. Smith and X.-Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.
|
[35]
|
F.-B. Wang, S.-B. Hsu and Y.-H. Ho, Mathematical analysis on a Droop model with intraguild predation, Taiwanese J. Math., 23 (2019), 351-373.
doi: 10.11650/tjm/181011.
|
[36]
|
S. Wilken, J. M. H. Verspagen, S. Naus-Wiezer, E. V. Donk and J. Huisman, Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source, Oikos, 123 (2014), 423-432.
doi: 10.1111/j.1600-0706.2013.00736.x.
|
[37]
|
J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835.
doi: 10.1016/S0362-546X(98)00250-8.
|
[38]
|
J. H. Wu and G. S. K. Wolkowicz, A system of resource-based growth models with two resources in the un-stirred chemostat, J. Differential Equations, 172 (2001), 300-332.
doi: 10.1006/jdeq.2000.3870.
|
[39]
|
X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.
doi: 10.1007/978-3-319-56433-3.
|