The goal of this paper is to study the long-time behavior of a class of extensible beams equation with the nonlocal weak damping
$ \begin{eqnarray*} u_{tt}+\Delta^2 u-m(\|\nabla u\|^2)\Delta u +\| u_t\|^{p}u_t+f(u) = h, \rm{in}\; \Omega\times\mathbb{R^{+}}, p\geq0 \end{eqnarray*} $
on a bounded smooth domain $ \Omega\subset\mathbb{R}^{n} $ with hinged (clamped) boundary condition. Under some suitable conditions on the Kirchhoff coefficient $ m(\|\nabla u\|^2) $ and the nonlinear term $ f(u) $, the well-posedness is established by means of the monotone operator theory and the existence of a global attractor is obtained in the subcritical case, where the asymptotic smooothness of the semigroup is verified by the energy reconstruction method.
Citation: |
[1] |
A. C. Biazutti and H. R. Crippa, Global attractor and inertial set for the beam equation, Appl. Anal., 55 (1994), 61-78.
doi: 10.1080/00036819408840290.![]() ![]() ![]() |
[2] |
E. H. de Brito, The damped elastic stretched string equation generalized: Existence, uniqueness, regularity and stability, Applicable Anal., 13 (1982), 219-233.
doi: 10.1080/00036818208839392.![]() ![]() ![]() |
[3] |
J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.
doi: 10.1016/0022-247X(73)90121-2.![]() ![]() ![]() |
[4] |
J. M. Ball, Stability theory for an extensible beam, J. Differential Equations, 14 (1973), 399-418.
doi: 10.1016/0022-0396(73)90056-9.![]() ![]() ![]() |
[5] |
J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31.![]() ![]() ![]() |
[6] |
P. Biler, Remark on the decay for damped string and beam equations, Nonlinear Anal., 10 (1986), 839-842.
doi: 10.1016/0362-546X(86)90071-4.![]() ![]() ![]() |
[7] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces., Noordhoff International Publishing, Leiden, 1976,352 pp.
![]() ![]() |
[8] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6 (2004), 705-731.
doi: 10.1142/S0219199704001483.![]() ![]() ![]() |
[9] |
I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. 436 pp.
![]() ![]() |
[10] |
I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math.Soc., 195 (2008).
doi: 10.1090/memo/0912.![]() ![]() ![]() |
[11] |
I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.
doi: 10.3934/cpaa.2012.11.659.![]() ![]() ![]() |
[12] |
M. Coti Zelati, Global and exponential attractors for the singularly perturbed extensible beam, Discrete Contin. Dyn. Syst., 25 (2009), 1041-1060.
doi: 10.3934/dcds.2009.25.1041.![]() ![]() ![]() |
[13] |
R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J.Math. Anal.Appl., 29 (1970), 443-454.
doi: 10.1016/0022-247X(70)90094-6.![]() ![]() ![]() |
[14] |
A. Eden and A. J. Milani, Exponential attractor for extensible beam equations, Nonlinearity, 6 (1993), 457-479.
doi: 10.1088/0951-7715/6/3/007.![]() ![]() ![]() |
[15] |
J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167-175.
doi: 10.1007/BF01602658.![]() ![]() ![]() |
[16] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. AMS, Providence, RI, 1988.
![]() ![]() |
[17] |
H. Lange and G. Perla Menzala, Rates of decay of a nonlocal beam equation, Differential Integral Equations, 10 (1997), 1075-1092.
![]() ![]() |
[18] |
J.-L. Lions, On some questions in boundary value problems in mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Rio de Janeiro, North-Holland, Amsterdam-New York, 30 (1978), 284–346.
![]() ![]() |
[19] |
H. M. Berger, A new approach to the analysis of large deflections of plates, J. Appl. Mech., 22 (1955), 465-472.
![]() ![]() |
[20] |
T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.
doi: 10.1016/j.na.2010.07.023.![]() ![]() ![]() |
[21] |
L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.
doi: 10.1016/0022-247X(79)90192-6.![]() ![]() ![]() |
[22] |
F. J. Meng, J. Wu and C. X. Zhao, Time-dependent global attractor for extensible Berger equation, J. Math. Anal. Appl., 469 (2019), 1045-1069.
doi: 10.1016/j.jmaa.2018.09.050.![]() ![]() ![]() |
[23] |
F. J. Meng, M. H. Yang and C. K. Zhong, Attractors for wave equations with nonlinear damping on time-dependent space, Discrete. Contin. Dyn. Syst. Ser. B, 21 (2016), 205-225.
doi: 10.3934/dcdsb.2016.21.205.![]() ![]() ![]() |
[24] |
S. Kouémou Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differential Equations, 135 (1997), 299-314.
doi: 10.1006/jdeq.1996.3231.![]() ![]() ![]() |
[25] |
V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.
doi: 10.1088/0951-7715/19/7/001.![]() ![]() ![]() |
[26] |
I. Perai, Multiplicity of Solutions for the $p$-Laplacian, 1997.
![]() |
[27] |
M. A. Jorge Silva and V. Narciso, Long-time behavior for a plate equation with nonlocal weak damping, Differential Integral Equations, 27 (2014), 931-948.
![]() ![]() |
[28] |
M. A. Jorge Silva and V. Narciso, Attractors and their properties for a class of nonlocal extensible beams, Discrete Contin.Dyn. Syst., 35 (2015), 985-1008.
doi: 10.3934/dcds.2015.35.985.![]() ![]() ![]() |
[29] |
M. A. J. da Silva and V. Narciso, Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping, Evol. Equ. Control Theory, 6 (2017), 437-470.
doi: 10.3934/eect.2017023.![]() ![]() ![]() |
[30] |
J. Simon, Régularité de la solution d'une équation non linéaire dans ${{\mathbf{R}}^{N}}$, Journées d'Analyse Non Linéaire, Lecture Notes in Math., Springer, Berlin, 665 (1978), 205–227.
![]() ![]() |
[31] |
J. Simon, Compact sets in the space $L^{p}(0, T;B)$, Ann. Mat. Pure Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360.![]() ![]() ![]() |
[32] |
R. E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49. AMS, Providence, RI, 1997.
![]() ![]() |
[33] |
C. Y. Sun, D. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.
doi: 10.1088/0951-7715/19/11/008.![]() ![]() ![]() |
[34] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
[35] |
C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. Fac. Sci. Toulouse Math., 8 (1999), 173-193.
doi: 10.5802/afst.928.![]() ![]() ![]() |
[36] |
S. Woinowsky-Krieger, The efect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36.
![]() ![]() |
[37] |
L. Yang and X. Wang, Existence of attractors for the non-autonomous Berger equation with nonlinear damping, Electron. J. Differential Equations, (2017), 14 pp.
![]() ![]() |
[38] |
L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254.
doi: 10.1016/j.jmaa.2007.06.011.![]() ![]() ![]() |
[39] |
Z. J. Yang, On an extensible beam equation with nonlinear damping and source terms, J.Dierential Equations, 254 (2013), 3903-3927.
doi: 10.1016/j.jde.2013.02.008.![]() ![]() ![]() |