June  2020, 25(6): 2121-2142. doi: 10.3934/dcdsb.2019204

A discrete model of competing species sharing a parasite

1. 

U.D. Matemáticas, Ed. Ciencias, Universidad de Alcalá, 28871 Alcalá de Henares, Spain

2. 

Dpto. Matemática Aplicada a la Ingeniería, ETSI Industriales, Univ. Politécnica de Madrid, 28006 Madrid, Spain

Received  February 2019 Published  June 2020 Early access  September 2019

Fund Project: Authors are supported by Ministerio de Economía y Competitividad (Spain), project MTM2014-56022-C2-1-P.

In this work we develop a discrete model of competing species affected by a common parasite. We analyze the influence of the fast development of the shared disease on the community dynamics. The model is presented under the form of a two time scales discrete system with four variables. Thus, it becomes analytically tractable with the help of the appropriate reduction method. The 2-dimensional reduced system, that has the same asymptotic behaviour as the full model, is a generalization of the Leslie-Gower competition model. It has the unfrequent property in this kind of models of including multiple equilibrium attractors of mixed type. The analysis of the reduced system shows that parasites can completely alter the outcome of competition depending on the parasite's basic reproductive number $ R_0 $. In some cases, initial conditions decide among several exclusion or coexistence scenarios.

Citation: Rafael Bravo De La Parra, Luis Sanz. A discrete model of competing species sharing a parasite. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2121-2142. doi: 10.3934/dcdsb.2019204
References:
[1]

L. J. S. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Mathematical Biosciences, 124 (1994), 83-105.  doi: 10.1016/0025-5564(94)90025-6.

[2]

B. BolkerM. HolyoakV. KrivanL. Rowe and O. Schmitz, Connecting theoretical and empirical studies of trait-mediated interactions, Ecology, 84 (2003), 1101-1114.  doi: 10.1890/0012-9658(2003)084[1101:CTAESO]2.0.CO;2.

[3]

R. Bravo de la ParraM. MarváE. Sánchez and L. Sanz, Reduction of discrete dynamical systems with applications to dynamics population models, Mathematical Modelling of Natural Phenomena, 8 (2013), 107-129.  doi: 10.1051/mmnp/20138608.

[4]

R. Bravo de la Parra, M. Marvá, E. Sánchez and L. Sanz, Discrete models of disease and competition, Discrete Dynamics in Nature and Society, (2017), Art. ID 5310837, 13 pp. doi: 10.1155/2017/5310837.

[5]

R. Bravo de la ParraM. MarváE. Sánchez and L. Sanz, A discrete predator-prey ecoepidemic model, Mathematical Modelling of Natural Phenomena, 12 (2017), 116-132.  doi: 10.1051/mmnp/201712207.

[6]

Y. Chow and S. R.-J. Jang, Multiple attractors in a Leslie-Gower competition system with Allee effects, Journal of Difference Equations and Applications, 20 (2014), 169-187.  doi: 10.1080/10236198.2013.815166.

[7]

J. M. Cushing, R. F. Costantino, B. Dennis, R. Desharnais and S. M. Henson, Chaos in Ecology: Experimental Nonlinear Dynamics, Theoretical Ecology Series, Vol. 1. Academic Press (Elsevier Science), New York, 2003.

[8]

J. M. CushingS. M. Henson and C. C. Blackburn, Multiple mixed-type attractors in a competition model, Journal of Biological Dynamics, 1 (2007), 347-362.  doi: 10.1080/17513750701610010.

[9]

J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, Journal of Difference Equations and Applications, 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.

[10]

J. L. Edmunds, A Study of a Stage-Structured Model of Two Competing Species, Thesis (Ph.D.)-The University of Arizona, 2001, 64 pp. Available from: https://repository.arizona.edu/handle/10150/289978

[11]

J. L. Edmunds, Multiple attractors in a discrete competition model, Theoretical Population Biology, 72 (2007), 379-388.  doi: 10.1016/j.tpb.2007.07.004.

[12]

J. EdmundsJ. M. CushingR. F. CostantinoS. M. HensonB. Dennis and R. A. Desharnais, Park's tribolium competition experiments: A non-equilibrium species coexistence hypothesis, Journal of Animal Ecology, 72 (2003), 703-712. 

[13]

M. J. HatcherJ. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators, Ecology Letters, 9 (2006), 1253-1271.  doi: 10.1111/j.1461-0248.2006.00964.x.

[14] M. J. Hatcher and A. M. Dunn, Parasites in Ecological Communities: From Interactions to Ecosystems, Cambridge University Press, Cambridge, 2011. 
[15]

P. Klepac and H. Caswell, The stage-structured epidemic: Linking disease and demography with a multi-state matrix approach model, Theoretical Ecology, 4 (2011), 301-319.  doi: 10.1007/s12080-010-0079-8.

[16]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316-330.  doi: 10.1093/biomet/45.3-4.316.

[17]

P. H. LeslieT. Park and D. B. Mertz, The effect of varying the initial numbers on the outcome of competition between two tribolium species, Journal of Animal Ecology, 37 (1968), 9-23.  doi: 10.2307/2708.

[18]

M. Marvá and R. Bravo de la Parra, Coexistence and superior competitor exclusion in the Leslie-Gower competition model with fast dispersal, Ecological Modelling, 306 (2015), 247-256.  doi: 10.1016/j.ecolmodel.2014.10.039.

[19]

T. Park and M. Burton Frank, The fecundity and development of the flour beetles, tribolium confusum and tribolium castaneum, at three constant temperatures, Ecology, 29 (1948), 368-374.  doi: 10.2307/1930996.

[20]

L. SanzR. Bravo de la Parra and E. Sánchez, Approximate reduction of non-linear discrete models with two time scales, Journal of Difference Equations and Applications, 14 (2008), 607-627.  doi: 10.1080/10236190701709036.

[21]

H. L. Smith, Planar competitive and cooperative difference equations, Journal of Difference Equations and Applications, 3 (1998), 335-357.  doi: 10.1080/10236199708808108.

[22]

E. E. Werner and S. D. Peacor, A review of trait-mediated indirect interactions in ecological communities, Ecology, 84 (2003), 1083-1100. 

show all references

References:
[1]

L. J. S. Allen, Some discrete-time SI, SIR, and SIS epidemic models, Mathematical Biosciences, 124 (1994), 83-105.  doi: 10.1016/0025-5564(94)90025-6.

[2]

B. BolkerM. HolyoakV. KrivanL. Rowe and O. Schmitz, Connecting theoretical and empirical studies of trait-mediated interactions, Ecology, 84 (2003), 1101-1114.  doi: 10.1890/0012-9658(2003)084[1101:CTAESO]2.0.CO;2.

[3]

R. Bravo de la ParraM. MarváE. Sánchez and L. Sanz, Reduction of discrete dynamical systems with applications to dynamics population models, Mathematical Modelling of Natural Phenomena, 8 (2013), 107-129.  doi: 10.1051/mmnp/20138608.

[4]

R. Bravo de la Parra, M. Marvá, E. Sánchez and L. Sanz, Discrete models of disease and competition, Discrete Dynamics in Nature and Society, (2017), Art. ID 5310837, 13 pp. doi: 10.1155/2017/5310837.

[5]

R. Bravo de la ParraM. MarváE. Sánchez and L. Sanz, A discrete predator-prey ecoepidemic model, Mathematical Modelling of Natural Phenomena, 12 (2017), 116-132.  doi: 10.1051/mmnp/201712207.

[6]

Y. Chow and S. R.-J. Jang, Multiple attractors in a Leslie-Gower competition system with Allee effects, Journal of Difference Equations and Applications, 20 (2014), 169-187.  doi: 10.1080/10236198.2013.815166.

[7]

J. M. Cushing, R. F. Costantino, B. Dennis, R. Desharnais and S. M. Henson, Chaos in Ecology: Experimental Nonlinear Dynamics, Theoretical Ecology Series, Vol. 1. Academic Press (Elsevier Science), New York, 2003.

[8]

J. M. CushingS. M. Henson and C. C. Blackburn, Multiple mixed-type attractors in a competition model, Journal of Biological Dynamics, 1 (2007), 347-362.  doi: 10.1080/17513750701610010.

[9]

J. M. CushingS. LevargeN. Chitnis and S. M. Henson, Some discrete competition models and the competitive exclusion principle, Journal of Difference Equations and Applications, 10 (2004), 1139-1151.  doi: 10.1080/10236190410001652739.

[10]

J. L. Edmunds, A Study of a Stage-Structured Model of Two Competing Species, Thesis (Ph.D.)-The University of Arizona, 2001, 64 pp. Available from: https://repository.arizona.edu/handle/10150/289978

[11]

J. L. Edmunds, Multiple attractors in a discrete competition model, Theoretical Population Biology, 72 (2007), 379-388.  doi: 10.1016/j.tpb.2007.07.004.

[12]

J. EdmundsJ. M. CushingR. F. CostantinoS. M. HensonB. Dennis and R. A. Desharnais, Park's tribolium competition experiments: A non-equilibrium species coexistence hypothesis, Journal of Animal Ecology, 72 (2003), 703-712. 

[13]

M. J. HatcherJ. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators, Ecology Letters, 9 (2006), 1253-1271.  doi: 10.1111/j.1461-0248.2006.00964.x.

[14] M. J. Hatcher and A. M. Dunn, Parasites in Ecological Communities: From Interactions to Ecosystems, Cambridge University Press, Cambridge, 2011. 
[15]

P. Klepac and H. Caswell, The stage-structured epidemic: Linking disease and demography with a multi-state matrix approach model, Theoretical Ecology, 4 (2011), 301-319.  doi: 10.1007/s12080-010-0079-8.

[16]

P. H. Leslie and J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316-330.  doi: 10.1093/biomet/45.3-4.316.

[17]

P. H. LeslieT. Park and D. B. Mertz, The effect of varying the initial numbers on the outcome of competition between two tribolium species, Journal of Animal Ecology, 37 (1968), 9-23.  doi: 10.2307/2708.

[18]

M. Marvá and R. Bravo de la Parra, Coexistence and superior competitor exclusion in the Leslie-Gower competition model with fast dispersal, Ecological Modelling, 306 (2015), 247-256.  doi: 10.1016/j.ecolmodel.2014.10.039.

[19]

T. Park and M. Burton Frank, The fecundity and development of the flour beetles, tribolium confusum and tribolium castaneum, at three constant temperatures, Ecology, 29 (1948), 368-374.  doi: 10.2307/1930996.

[20]

L. SanzR. Bravo de la Parra and E. Sánchez, Approximate reduction of non-linear discrete models with two time scales, Journal of Difference Equations and Applications, 14 (2008), 607-627.  doi: 10.1080/10236190701709036.

[21]

H. L. Smith, Planar competitive and cooperative difference equations, Journal of Difference Equations and Applications, 3 (1998), 335-357.  doi: 10.1080/10236199708808108.

[22]

E. E. Werner and S. D. Peacor, A review of trait-mediated indirect interactions in ecological communities, Ecology, 84 (2003), 1083-1100. 

Figure 1.  Different configurations of system (10) when $ \phi _{i}(0,0)>1 $ for $ i = 1,2 $, in terms of the relative position of the intercepts of isoclines, $ R_{ij} $ (11) and the number of positive equilibria, as described in (13)
Figure 2.  Basins of attraction $ B(E_{1}^{\ast}) $, $ B(E_{2}^{\ast}) $ and $ B(E_{4}^{\ast}) $ of equilibria $ E_{1}^{\ast} $, $ E_{2}^{\ast} $ and $ E_{4}^{\ast} $ and separatrix curves $ \gamma_{3} $ and $ \gamma_{5} $ for system (9) for parameters values: $ \nu = 0.5 $, $ b_{S}^{1} = 13 $, $ b_{I}^{1} = 3.6 $, $ b_{S}^{2} = 3.4 $, $ b_{I}^{2} = 8 $, $ c_{SS}^{11} = c_{SI}^{11} = 0.9 $, $ c_{IS}^{11} = c_{II}^{11} = 0.1 $, $ c_{SS}^{12} = c_{SI}^{12} = 1.1 $, $ c_{IS}^{12} = c_{II}^{12} = 5 $, $ c_{SS} ^{21} = c_{SI}^{21} = 6 $, $ c_{IS}^{21} = c_{II}^{21} = 0.3 $, $ c_{SS}^{22} = c_{SI} ^{22} = 0.2 $, $ c_{IS}^{22} = c_{II}^{22} = 0.8 $
Figure 3.  Asymptotic behaviour cases of solutions of system (9) (Th. (3.3)) for parameters values: $ \nu\in(0,1) $, $ b_{S}^{1}\in[2,20] $, $ b_{I}^{1} = 2 $, $ b_{S}^{2} = 4.4,b_{I}^{2} = 9 $, $ c_{SS}^{11} = 1.3 $, $ c_{SI}^{11} = 0.5 $, $ c_{IS}^{11} = c_{II}^{11} = 0.1 $, $ c_{SS}^{12} = 1 $, $ c_{SI}^{12} = 0.05 $, $ c_{IS}^{12} = 8 $, $ c_{II}^{12} = 3 $, $ c_{SS}^{21} = 6 $, $ c_{SI}^{21} = c_{IS} ^{21} = c_{II}^{21} = 0.3 $, $ c_{SS}^{22} = c_{SI}^{22} = 0.2 $, $ c_{IS}^{22} = c_{II}^{22} = 0.8 $
[1]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[2]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1803-1811. doi: 10.3934/dcdss.2020106

[3]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[4]

Jaydeep Swarnakar. Discrete-time realization of fractional-order proportional integral controller for a class of fractional-order system. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 309-320. doi: 10.3934/naco.2021007

[5]

Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066

[6]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[7]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure and Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[8]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[9]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[10]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[11]

Veena Goswami, Gopinath Panda. Optimal information policy in discrete-time queues with strategic customers. Journal of Industrial and Management Optimization, 2019, 15 (2) : 689-703. doi: 10.3934/jimo.2018065

[12]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[13]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[14]

Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discrete-time space priority queue with fuzzy threshold. Journal of Industrial and Management Optimization, 2009, 5 (3) : 467-479. doi: 10.3934/jimo.2009.5.467

[15]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial and Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[16]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[17]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial and Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

[18]

Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discrete-time SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699-710. doi: 10.3934/mbe.2007.4.699

[19]

Abhyudai Singh, Roger M. Nisbet. Variation in risk in single-species discrete-time models. Mathematical Biosciences & Engineering, 2008, 5 (4) : 859-875. doi: 10.3934/mbe.2008.5.859

[20]

Sofian De Clercq, Wouter Rogiest, Bart Steyaert, Herwig Bruneel. Stochastic decomposition in discrete-time queues with generalized vacations and applications. Journal of Industrial and Management Optimization, 2012, 8 (4) : 925-938. doi: 10.3934/jimo.2012.8.925

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (204)
  • HTML views (332)
  • Cited by (0)

Other articles
by authors

[Back to Top]