
-
Previous Article
Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion
- DCDS-B Home
- This Issue
-
Next Article
The fast signal diffusion limit in nonlinear chemotaxis systems
Global asymptotic stability of nonconvex sweeping processes
Department of Mathematical Sciences, University of Texas at Dallas, 75080 Richardson, USA |
Building upon the technique that we developed earlier for perturbed sweeping processes with convex moving constraints and monotone vector fields (Kamenskii et al, Nonlinear Anal. Hybrid Syst. 30, 2018), the present paper establishes the conditions for global asymptotic stability of global and periodic solutions to perturbed sweeping processes with prox-regular moving constraints. Our conclusion can be formulated as follows: closer the constraint to a convex one, weaker monotonicity is required to keep the sweeping process globally asymptotically stable. We explain why the proposed technique is not capable to prove global asymptotic stability of a periodic regime in a crowd motion model (Cao-Mordukhovich, DCDS-B 22, 2017). We introduce and analyze a toy model which clarifies the extent of applicability of our result.
References:
[1] |
L. Adam and J. Outrata,
On optimal control of a sweeping process coupled with an ordinary differential equation, Discrete Contin. Dyn. Syst.–Ser. B, 19 (2014), 2709-2738.
doi: 10.3934/dcdsb.2014.19.2709. |
[2] |
J. Bastien, F. Bernardin and C.-H. Lamarque, Non Smooth Deterministic or Stochastic Discrete, Dynamical Systems: Applications to Models with Friction or Impact, Wiley, 2013,512 pp. |
[3] |
H. Benabdellah,
Existence of solutions to the nonconvex sweeping process, Journal of Differential Equations, 164 (2000), 286-295.
doi: 10.1006/jdeq.1999.3756. |
[4] |
B. Brogliato,
Absolute stability and the Lagrange–Dirichlet theorem with monotone multivalued mappings, Systems & Control Letters, 51 (2004), 343-353.
doi: 10.1016/j.sysconle.2003.09.007. |
[5] |
B. Brogliato and W. M. H. Heemels,
Observer design for Lur'e systems with multivalued mappings: A passivity approach, IEEE Transactions on Automatic Control, 54 (2009), 1996-2001.
doi: 10.1109/TAC.2009.2023968. |
[6] |
T. H. Cao and B. S. Mordukhovich,
Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Cont. Dyn. Syst., Ser B., 22 (2017), 267-306.
doi: 10.3934/dcdsb.2017014. |
[7] |
T. H. Cao and B. Mordukhovich,
Optimal control of a nonconvex perturbed sweeping process, Journal of Differential Equations, 266 (2019), 1003-1050.
doi: 10.1016/j.jde.2018.07.066. |
[8] |
C. Castaing and M. D. Monteiro Marques,
BV periodic solutions of an evolution problem associated with continuous moving convex sets, Set-Valued Analysis, 3 (1995), 381-399.
doi: 10.1007/BF01026248. |
[9] |
G. Colombo and V. V. Goncharov,
The sweeping processes without convexity, Set-Valued Analysis, 7 (1999), 357-374.
doi: 10.1023/A:1008774529556. |
[10] |
G. Colombo and M. D. Monteiro Marques,
Sweeping by a continuous prox-regular set, Journal of Differential Equations, 187 (2003), 46-62.
doi: 10.1016/S0022-0396(02)00021-9. |
[11] |
J. F. Edmond and L. Thibault,
BV solutions of nonconvex sweeping process differential inclusion with perturbation, Journal of Differential Equations, 226 (2006), 135-179.
doi: 10.1016/j.jde.2005.12.005. |
[12] |
J. F. Edmond and L. Thibault,
Relaxation of an optimal control problem involving a perturbed sweeping process, Mathematical Programming, 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y. |
[13] |
C. O. Frederick and P. J. Armstrong,
Convergent internal stresses and steady cyclic states of stress, The Journal of Strain Analysis for Engineering Design, 1 (1966), 154-159.
doi: 10.1243/03093247V012154. |
[14] |
M. Kamenskii, O. Makarenkov, L. N. Wadippuli and P. R. de Fitte,
Global stability of almost periodic solutions of monotone sweeping processes and their response to non-monotone perturbations, Nonlinear Analysis: Hybrid Systems, 30 (2018), 213-224.
doi: 10.1016/j.nahs.2018.05.007. |
[15] |
M. Kamenskii and O. Makarenkov,
On the response of autonomous sweeping processes to periodic perturbations, Set-Valued and Variational Analysis, 24 (2016), 551-563.
doi: 10.1007/s11228-015-0348-1. |
[16] |
P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996. |
[17] |
M. Kunze,
Periodic solutions of non-linear kinematic hardening models, Math. Methods Appl. Sci., 22 (1999), 515-529.
doi: 10.1002/(SICI)1099-1476(199904)22:6<515::AID-MMA48>3.0.CO;2-S. |
[18] |
R. I. Leine and N. Van de Wouw, Stability and Convergence of Mechanical Systems with Unilateral Constraints, Lecture Notes in Applied and Computational Mechanics, 36. Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-76975-0. |
[19] |
E. H. Lockwood, A Book of Curves, Cambridge University Press, New York, 1961.
![]() |
[20] |
B. Maury and J. Venel,
A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168.
doi: 10.1051/m2an/2010035. |
[21] |
B. S. Mordukhovich, Variational Analysis and Applications, Springer, 2018.
doi: 10.1007/978-3-319-92775-6. |
[22] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Transactions of American Mathematical Society, 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[23] |
C. Polizzotto,
Variational methods for the steady state response of elasticplastic solids subjected to cyclic loads, International Journal of Solids and Structures, 40 (2003), 2673-2697.
doi: 10.1016/S0020-7683(03)00093-3. |
[24] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[25] |
W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1976. |
[26] |
A. Tanwani, B. Brogliato and C. Prieur,
Stability and observer design for Lur'e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps, SIAM Journal on Control and Optimization, 52 (2014), 3639-3672.
doi: 10.1137/120902252. |
[27] |
L. Thibault,
Sweeping process with regular and nonregular sets, Journal of Differential Equations, 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3. |
[28] |
Y. V. Trubnikov and A. I. Perov, Differential Equations with Monotone Nonlinearities, "Nauka i Tekhnika", Minsk, 1986. |
[29] |
V. A. Zorich, Mathematical Analysis. II, Translated from the 2002 fourth Russian edition by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2004. |
[30] |
Z. Zhu, H. Leung and Z. Ding, Optimal synchronization of chaotic systems in noise, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999), 1320-1329. Google Scholar |
show all references
References:
[1] |
L. Adam and J. Outrata,
On optimal control of a sweeping process coupled with an ordinary differential equation, Discrete Contin. Dyn. Syst.–Ser. B, 19 (2014), 2709-2738.
doi: 10.3934/dcdsb.2014.19.2709. |
[2] |
J. Bastien, F. Bernardin and C.-H. Lamarque, Non Smooth Deterministic or Stochastic Discrete, Dynamical Systems: Applications to Models with Friction or Impact, Wiley, 2013,512 pp. |
[3] |
H. Benabdellah,
Existence of solutions to the nonconvex sweeping process, Journal of Differential Equations, 164 (2000), 286-295.
doi: 10.1006/jdeq.1999.3756. |
[4] |
B. Brogliato,
Absolute stability and the Lagrange–Dirichlet theorem with monotone multivalued mappings, Systems & Control Letters, 51 (2004), 343-353.
doi: 10.1016/j.sysconle.2003.09.007. |
[5] |
B. Brogliato and W. M. H. Heemels,
Observer design for Lur'e systems with multivalued mappings: A passivity approach, IEEE Transactions on Automatic Control, 54 (2009), 1996-2001.
doi: 10.1109/TAC.2009.2023968. |
[6] |
T. H. Cao and B. S. Mordukhovich,
Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Cont. Dyn. Syst., Ser B., 22 (2017), 267-306.
doi: 10.3934/dcdsb.2017014. |
[7] |
T. H. Cao and B. Mordukhovich,
Optimal control of a nonconvex perturbed sweeping process, Journal of Differential Equations, 266 (2019), 1003-1050.
doi: 10.1016/j.jde.2018.07.066. |
[8] |
C. Castaing and M. D. Monteiro Marques,
BV periodic solutions of an evolution problem associated with continuous moving convex sets, Set-Valued Analysis, 3 (1995), 381-399.
doi: 10.1007/BF01026248. |
[9] |
G. Colombo and V. V. Goncharov,
The sweeping processes without convexity, Set-Valued Analysis, 7 (1999), 357-374.
doi: 10.1023/A:1008774529556. |
[10] |
G. Colombo and M. D. Monteiro Marques,
Sweeping by a continuous prox-regular set, Journal of Differential Equations, 187 (2003), 46-62.
doi: 10.1016/S0022-0396(02)00021-9. |
[11] |
J. F. Edmond and L. Thibault,
BV solutions of nonconvex sweeping process differential inclusion with perturbation, Journal of Differential Equations, 226 (2006), 135-179.
doi: 10.1016/j.jde.2005.12.005. |
[12] |
J. F. Edmond and L. Thibault,
Relaxation of an optimal control problem involving a perturbed sweeping process, Mathematical Programming, 104 (2005), 347-373.
doi: 10.1007/s10107-005-0619-y. |
[13] |
C. O. Frederick and P. J. Armstrong,
Convergent internal stresses and steady cyclic states of stress, The Journal of Strain Analysis for Engineering Design, 1 (1966), 154-159.
doi: 10.1243/03093247V012154. |
[14] |
M. Kamenskii, O. Makarenkov, L. N. Wadippuli and P. R. de Fitte,
Global stability of almost periodic solutions of monotone sweeping processes and their response to non-monotone perturbations, Nonlinear Analysis: Hybrid Systems, 30 (2018), 213-224.
doi: 10.1016/j.nahs.2018.05.007. |
[15] |
M. Kamenskii and O. Makarenkov,
On the response of autonomous sweeping processes to periodic perturbations, Set-Valued and Variational Analysis, 24 (2016), 551-563.
doi: 10.1007/s11228-015-0348-1. |
[16] |
P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996. |
[17] |
M. Kunze,
Periodic solutions of non-linear kinematic hardening models, Math. Methods Appl. Sci., 22 (1999), 515-529.
doi: 10.1002/(SICI)1099-1476(199904)22:6<515::AID-MMA48>3.0.CO;2-S. |
[18] |
R. I. Leine and N. Van de Wouw, Stability and Convergence of Mechanical Systems with Unilateral Constraints, Lecture Notes in Applied and Computational Mechanics, 36. Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-76975-0. |
[19] |
E. H. Lockwood, A Book of Curves, Cambridge University Press, New York, 1961.
![]() |
[20] |
B. Maury and J. Venel,
A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168.
doi: 10.1051/m2an/2010035. |
[21] |
B. S. Mordukhovich, Variational Analysis and Applications, Springer, 2018.
doi: 10.1007/978-3-319-92775-6. |
[22] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault,
Local differentiability of distance functions, Transactions of American Mathematical Society, 352 (2000), 5231-5249.
doi: 10.1090/S0002-9947-00-02550-2. |
[23] |
C. Polizzotto,
Variational methods for the steady state response of elasticplastic solids subjected to cyclic loads, International Journal of Solids and Structures, 40 (2003), 2673-2697.
doi: 10.1016/S0020-7683(03)00093-3. |
[24] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
doi: 10.1007/978-3-642-02431-3. |
[25] |
W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1976. |
[26] |
A. Tanwani, B. Brogliato and C. Prieur,
Stability and observer design for Lur'e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps, SIAM Journal on Control and Optimization, 52 (2014), 3639-3672.
doi: 10.1137/120902252. |
[27] |
L. Thibault,
Sweeping process with regular and nonregular sets, Journal of Differential Equations, 193 (2003), 1-26.
doi: 10.1016/S0022-0396(03)00129-3. |
[28] |
Y. V. Trubnikov and A. I. Perov, Differential Equations with Monotone Nonlinearities, "Nauka i Tekhnika", Minsk, 1986. |
[29] |
V. A. Zorich, Mathematical Analysis. II, Translated from the 2002 fourth Russian edition by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2004. |
[30] |
Z. Zhu, H. Leung and Z. Ding, Optimal synchronization of chaotic systems in noise, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999), 1320-1329. Google Scholar |

[1] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[4] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[5] |
Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021103 |
[6] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[7] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[8] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[9] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[10] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[11] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[12] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[13] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[14] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[15] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[16] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[17] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[18] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[19] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[20] |
Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]