March  2020, 25(3): 1141-1158. doi: 10.3934/dcdsb.2019213

Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion

1. 

School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

2. 

Graduate School of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan

3. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710072, China

4. 

School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China

* Corresponding author: Yong Xu

Received  November 2018 Revised  February 2019 Published  September 2019

Fund Project: The research of B. Pei was partially supported by the NSF of China (11802216), the China Postdoctoral Science Foundation (2019M651334) and JSPS KAKENHI Grant Number JP18F18314 (Grant-in-Aid for JSPS Fellows). The research of Y. Xu was partially supported by the NSF of China (11702216), Shaanxi Province Project for Distinguished Young Scholars and the Fundamental Research Funds for the Central Universities. B. Pei would like to thank JSPS for Postdoctoral Fellowships for Research in Japan (Standard).

In this paper, we focus on fast-slow stochastic partial differential equations in which the slow variable is driven by a fractional Brownian motion and the fast variable is driven by an additive Brownian motion. We establish an averaging principle in which the fast-varying diffusion process will be averaged out with respect to its stationary measure in the limit process. It is shown that the slow-varying process $ L^{p}(p \geq 2) $ converges to the solution of the corresponding averaging equation. To reduce the complexity, one can concentrate on the limit process instead of studying the original full fast-slow system.

Citation: Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213
References:
[1]

E. AlòsO. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, The Annals of Probability, 29 (1999), 766-801.  doi: 10.1214/aop/1008956692.  Google Scholar

[2]

J. BaoG. Yin and C. Yuan, Two-time-scale stochastic partial differential equations driven by alpha-stable noise: averaging principles, Bernoulli, 23 (2017), 645-669.  doi: 10.3150/14-BEJ677.  Google Scholar

[3]

J. Bao and C. Yuan, Numerical analysis for neutral SPDEs driven by α-stable processes, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 17 (2014), 1450031, 16pp. doi: 10.1142/S0219025714500313.  Google Scholar

[4]

P. Bezandry, Existence of almost periodic solutions for semilinear stochastic evolution equations driven by fractional Brownian motion, Electronic Journal of Differential Equations, 156 (2012), 1-21.   Google Scholar

[5]

C. Bréhier, Strong and weak orders in averaging for SPDEs, Stochastic Processes and their Applications, 122 (2012), 2553-2593.  doi: 10.1016/j.spa.2012.04.007.  Google Scholar

[6]

T. CaraballoM. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[7]

S. Cerrai and M. Freidlin, Averaging principle for a class of stochastic reaction–diffusion equations, Probability Theory and Related Fields, 144 (2009), 137-177.  doi: 10.1007/s00440-008-0144-z.  Google Scholar

[8]

P. Chow, Stochastic Partial Differential Equations, Second edition. Advances in Applied Mathematics. CRC Press, Boca Raton, FL, 2015.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Averaging of attractors and inertial manifolds for parabolic PDE with random coefficients, Advanced Nonlinear Studies, 5 (2005), 461-492.  doi: 10.1515/ans-2005-0402.  Google Scholar

[10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[11]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, Amsterdam, 2014.  Google Scholar

[12]

T. DuncanY. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion i. theory, SIAM Journal on Control and Optimization, 38 (2000), 582-612.  doi: 10.1137/S036301299834171X.  Google Scholar

[13]

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9.  Google Scholar

[14]

H. Fu and J. Liu, Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations, Journal of Mathematical Analysis and Applications, 384 (2011), 70-86.  doi: 10.1016/j.jmaa.2011.02.076.  Google Scholar

[15]

H. FuL. Wan and J. Liu, Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales, Stochastic Processes and their Applications, 125 (2015), 3255-3279.  doi: 10.1016/j.spa.2015.03.004.  Google Scholar

[16]

D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential sysytems, Multiscale Modeling & Simulation, 6 (2007), 577-594.  doi: 10.1137/060673345.  Google Scholar

[17]

R. Guo and B. Pei, Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson point processes,, Stochastic Analysis and Applications, 36 (2018), 751-766.  doi: 10.1080/07362994.2018.1461567.  Google Scholar

[18]

Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6 (2003), 1-32.  doi: 10.1142/S0219025703001110.  Google Scholar

[19]

H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116 (1951), 770-808.   Google Scholar

[20]

J. Luo and T. Taniguchi, The existence and uniqueness for non-lipschitz stochastic neutral delay evolution equations driven by poisson jumps, Stochastics & Dynamics, 9 (2010), 135-152.  doi: 10.1142/S0219493709002592.  Google Scholar

[21]

B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, Journal of Functional Analysis, 202 (2003), 277-305.  doi: 10.1016/S0022-1236(02)00065-4.  Google Scholar

[22]

J. MéminY. Mishura and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statistics & Probability Letters, 51 (2001), 197-206.  doi: 10.1016/S0167-7152(00)00157-7.  Google Scholar

[23]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[24]

D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[25]

B. Øksendal, Stochastic Differential Equations, Springer, Heidelberg, 2003. Google Scholar

[26]

B. PeiY. Xu and J. Wu, Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: Existence, uniqueness and averaging principles,, Journal of Mathematical Analysis and Applications, 447 (2017), 243-268.  doi: 10.1016/j.jmaa.2016.10.010.  Google Scholar

[27]

B. Pei, Y. Xu and G. Yin, Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes, Stochastics & Dynamics, 18 (2018), 1850023, 19pp. doi: 10.1142/S0219493718500235.  Google Scholar

[28]

B. PeiY. Xu and G. Yin, Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations, Nonlinear Analysis: Theory Method and Application, 160 (2017), 159-176.  doi: 10.1016/j.na.2017.05.005.  Google Scholar

[29]

B. PeiY. XuG. Yin and X. Zhang, Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes, Nonlinear Analysis: Hybrid Systems, 27 (2018), 107-124.  doi: 10.1016/j.nahs.2017.08.008.  Google Scholar

[30]

J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Mathematica Bohemica, 118 (1993), 67-106.   Google Scholar

[31]

W. ThompsonR. Kuske and A. Monahan, Stochastic averaging of dynamical systems with multiple time scales forced with α-stable noise, Multiscale Modeling & Simulation, 13 (2015), 1194-1223.  doi: 10.1137/140990632.  Google Scholar

[32]

S. TindelC. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probability Theory and Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[33]

J. XuY. Miao and J. Liu, Strong averaging principle for slow-fast SPDEs with Poisson random measures, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2233-2256.  doi: 10.3934/dcdsb.2015.20.2233.  Google Scholar

[34]

J. Xu and Y. Miao, Lp (p > 2)-strong convergence of an averaging principle for two-time-scales jump-diffusion stochastic differential equations, Nonlinear Analysis: Hybrid Systems, 18 (2015), 33-47.  doi: 10.1016/j.nahs.2015.05.001.  Google Scholar

[35]

J. Xu, Lp-strong convergence of the averaging principle for slow-fast SPDEs with jumps, Journal of Mathematical Analysis and Applications, 445 (2017), 342-373.  doi: 10.1016/j.jmaa.2016.07.058.  Google Scholar

[36]

Y. XuR. GuoD. LiuH. Zhang and J. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1197-1212.  doi: 10.3934/dcdsb.2014.19.1197.  Google Scholar

[37]

Y. XuB. Pei and R. Guo, Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2257-2267.  doi: 10.3934/dcdsb.2015.20.2257.  Google Scholar

[38]

Y. Xu, B. Pei and J. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stochastics & Dynamics, 17 (2017), 1750013, 16pp. doi: 10.1142/S0219493717500137.  Google Scholar

[39]

Y. XuJ. Duan and W. Xu, An averaging principle for stochastic dynamical systems with Lévy noise, Physica D: Nonlinear Phenomena, 240 (2011), 1395-1401.  doi: 10.1016/j.physd.2011.06.001.  Google Scholar

show all references

References:
[1]

E. AlòsO. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, The Annals of Probability, 29 (1999), 766-801.  doi: 10.1214/aop/1008956692.  Google Scholar

[2]

J. BaoG. Yin and C. Yuan, Two-time-scale stochastic partial differential equations driven by alpha-stable noise: averaging principles, Bernoulli, 23 (2017), 645-669.  doi: 10.3150/14-BEJ677.  Google Scholar

[3]

J. Bao and C. Yuan, Numerical analysis for neutral SPDEs driven by α-stable processes, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 17 (2014), 1450031, 16pp. doi: 10.1142/S0219025714500313.  Google Scholar

[4]

P. Bezandry, Existence of almost periodic solutions for semilinear stochastic evolution equations driven by fractional Brownian motion, Electronic Journal of Differential Equations, 156 (2012), 1-21.   Google Scholar

[5]

C. Bréhier, Strong and weak orders in averaging for SPDEs, Stochastic Processes and their Applications, 122 (2012), 2553-2593.  doi: 10.1016/j.spa.2012.04.007.  Google Scholar

[6]

T. CaraballoM. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[7]

S. Cerrai and M. Freidlin, Averaging principle for a class of stochastic reaction–diffusion equations, Probability Theory and Related Fields, 144 (2009), 137-177.  doi: 10.1007/s00440-008-0144-z.  Google Scholar

[8]

P. Chow, Stochastic Partial Differential Equations, Second edition. Advances in Applied Mathematics. CRC Press, Boca Raton, FL, 2015.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Averaging of attractors and inertial manifolds for parabolic PDE with random coefficients, Advanced Nonlinear Studies, 5 (2005), 461-492.  doi: 10.1515/ans-2005-0402.  Google Scholar

[10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[11]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, Amsterdam, 2014.  Google Scholar

[12]

T. DuncanY. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion i. theory, SIAM Journal on Control and Optimization, 38 (2000), 582-612.  doi: 10.1137/S036301299834171X.  Google Scholar

[13]

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9.  Google Scholar

[14]

H. Fu and J. Liu, Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations, Journal of Mathematical Analysis and Applications, 384 (2011), 70-86.  doi: 10.1016/j.jmaa.2011.02.076.  Google Scholar

[15]

H. FuL. Wan and J. Liu, Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales, Stochastic Processes and their Applications, 125 (2015), 3255-3279.  doi: 10.1016/j.spa.2015.03.004.  Google Scholar

[16]

D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential sysytems, Multiscale Modeling & Simulation, 6 (2007), 577-594.  doi: 10.1137/060673345.  Google Scholar

[17]

R. Guo and B. Pei, Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson point processes,, Stochastic Analysis and Applications, 36 (2018), 751-766.  doi: 10.1080/07362994.2018.1461567.  Google Scholar

[18]

Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6 (2003), 1-32.  doi: 10.1142/S0219025703001110.  Google Scholar

[19]

H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116 (1951), 770-808.   Google Scholar

[20]

J. Luo and T. Taniguchi, The existence and uniqueness for non-lipschitz stochastic neutral delay evolution equations driven by poisson jumps, Stochastics & Dynamics, 9 (2010), 135-152.  doi: 10.1142/S0219493709002592.  Google Scholar

[21]

B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, Journal of Functional Analysis, 202 (2003), 277-305.  doi: 10.1016/S0022-1236(02)00065-4.  Google Scholar

[22]

J. MéminY. Mishura and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statistics & Probability Letters, 51 (2001), 197-206.  doi: 10.1016/S0167-7152(00)00157-7.  Google Scholar

[23]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[24]

D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[25]

B. Øksendal, Stochastic Differential Equations, Springer, Heidelberg, 2003. Google Scholar

[26]

B. PeiY. Xu and J. Wu, Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: Existence, uniqueness and averaging principles,, Journal of Mathematical Analysis and Applications, 447 (2017), 243-268.  doi: 10.1016/j.jmaa.2016.10.010.  Google Scholar

[27]

B. Pei, Y. Xu and G. Yin, Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes, Stochastics & Dynamics, 18 (2018), 1850023, 19pp. doi: 10.1142/S0219493718500235.  Google Scholar

[28]

B. PeiY. Xu and G. Yin, Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations, Nonlinear Analysis: Theory Method and Application, 160 (2017), 159-176.  doi: 10.1016/j.na.2017.05.005.  Google Scholar

[29]

B. PeiY. XuG. Yin and X. Zhang, Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes, Nonlinear Analysis: Hybrid Systems, 27 (2018), 107-124.  doi: 10.1016/j.nahs.2017.08.008.  Google Scholar

[30]

J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Mathematica Bohemica, 118 (1993), 67-106.   Google Scholar

[31]

W. ThompsonR. Kuske and A. Monahan, Stochastic averaging of dynamical systems with multiple time scales forced with α-stable noise, Multiscale Modeling & Simulation, 13 (2015), 1194-1223.  doi: 10.1137/140990632.  Google Scholar

[32]

S. TindelC. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probability Theory and Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[33]

J. XuY. Miao and J. Liu, Strong averaging principle for slow-fast SPDEs with Poisson random measures, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2233-2256.  doi: 10.3934/dcdsb.2015.20.2233.  Google Scholar

[34]

J. Xu and Y. Miao, Lp (p > 2)-strong convergence of an averaging principle for two-time-scales jump-diffusion stochastic differential equations, Nonlinear Analysis: Hybrid Systems, 18 (2015), 33-47.  doi: 10.1016/j.nahs.2015.05.001.  Google Scholar

[35]

J. Xu, Lp-strong convergence of the averaging principle for slow-fast SPDEs with jumps, Journal of Mathematical Analysis and Applications, 445 (2017), 342-373.  doi: 10.1016/j.jmaa.2016.07.058.  Google Scholar

[36]

Y. XuR. GuoD. LiuH. Zhang and J. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1197-1212.  doi: 10.3934/dcdsb.2014.19.1197.  Google Scholar

[37]

Y. XuB. Pei and R. Guo, Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2257-2267.  doi: 10.3934/dcdsb.2015.20.2257.  Google Scholar

[38]

Y. Xu, B. Pei and J. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stochastics & Dynamics, 17 (2017), 1750013, 16pp. doi: 10.1142/S0219493717500137.  Google Scholar

[39]

Y. XuJ. Duan and W. Xu, An averaging principle for stochastic dynamical systems with Lévy noise, Physica D: Nonlinear Phenomena, 240 (2011), 1395-1401.  doi: 10.1016/j.physd.2011.06.001.  Google Scholar

[1]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[2]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[3]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[6]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3725-3757. doi: 10.3934/dcds.2021014

[7]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[8]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[9]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[10]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[11]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[12]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[13]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021097

[14]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[15]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[16]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[17]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[18]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[19]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[20]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (279)
  • HTML views (323)
  • Cited by (2)

Other articles
by authors

[Back to Top]