We study a level-set mean curvature flow equation with driving and source terms, and establish convergence results on the asymptotic behavior of solutions as time goes to infinity under some additional assumptions. We also study the associated stationary problem in details in a particular case, and establish Alexandrov's theorem in two dimensions in the viscosity sense, which is of independent interest.
Citation: |
[1] |
G. Barles, O. Ley, T.-T. Nguyen and T.V. Phan, Large time Behavior of unbounded solutions of first-order Hamilton-Jacobi in $\mathbb{R}^N$, Asymptot. Anal., 112 (2019), 1-22.
doi: 10.3233/ASY-181488.![]() ![]() ![]() |
[2] |
G. Barles and P.E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.
doi: 10.1137/S0036141099350869.![]() ![]() ![]() |
[3] |
F. Cagnetti, D. Gomes, H. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 183-200.
doi: 10.1016/j.anihpc.2013.10.005.![]() ![]() ![]() |
[4] |
A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing, Comm. Partial Differential Equations, 38 (2013), 780-801.
doi: 10.1080/03605302.2013.771508.![]() ![]() ![]() |
[5] |
Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.
doi: 10.4310/jdg/1214446564.![]() ![]() ![]() |
[6] |
M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.![]() ![]() ![]() |
[7] |
A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.
doi: 10.1137/050621955.![]() ![]() ![]() |
[8] |
L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559.![]() ![]() ![]() |
[9] |
A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4.![]() ![]() ![]() |
[10] |
Y. Giga, Surface Evolution Equations. A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser, Basel-Boston-Berlin, 2006.
doi: 10.1007/3-7643-7391-1.![]() ![]() ![]() |
[11] |
Y. Giga, On large time behavior of growth by birth and spread, Proc. Int. Cong. of Math. 2018 Rio de Janeiro, 3 (2018), 2287-2310.
![]() |
[12] |
M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154.![]() ![]() ![]() |
[13] |
Y. Giga and N. Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations, 38 (2013), 199-243.
doi: 10.1080/03605302.2012.739671.![]() ![]() ![]() |
[14] |
Y. Giga, H. Mitake and H.V. Tran, On asymptotic speed of solutions to level-set mean curvature flow equations with driving and source terms, SIAM J. Math. Anal., 48 (2016), 3515-3546.
doi: 10.1137/15M1052755.![]() ![]() ![]() |
[15] |
Y. Giga, H. Mitake, T. Ohtsuka and H. V. Tran, Existence of asymptotic speed of solutions to birth and spread type nonlinear partial differential equations, to appear in Indiana Univ. Math. J., https://www.iumj.indiana.edu/IUMJ/Preprints/8305.pdf.
![]() |
[16] |
Y. Giga, M. Ohnuma and M.-H. Sato, On the strong maximum principle and the large time behavior of generalized mean curvature flow with the Neumann boundary condition, J. Differential Equations, 154 (1999), 107-131.
doi: 10.1006/jdeq.1998.3569.![]() ![]() ![]() |
[17] |
Y. Giga, H.V. Tran and L.J. Zhang, On obstacle problem for mean curvature flow with driving force, Geom. Flows, 4 (2019), 9-29.
![]() ![]() |
[18] |
N. Hamamuki, On large time behavior of Hamilton-Jacobi equations with discontinuous source terms, Nonlinear Analysis in Interdisciplinary Sciences – Modellings, Theory and Simulations, 83–112, GAKUTO Internat. Ser. Math. Sci. Appl., 36, Gakkotosho, Tokyo, 2013.
![]() ![]() |
[19] |
N. Hamamuki and K. Misu, Asymptotic shape of solutions to the mean curvature flow equation with discontinuous source terms, work in progress.
![]() |
[20] |
N. Ichihara and H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians, Arch. Ration. Mech. Anal., 194 (2009), 383-419.
doi: 10.1007/s00205-008-0170-0.![]() ![]() ![]() |
[21] |
H. Ishii, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean $n$ space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 231-266.
doi: 10.1016/j.anihpc.2006.09.002.![]() ![]() ![]() |
[22] |
N. Q. Le, H. Mitake and H. V. Tran, Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations, Lecture Notes in Mathematics, 2183, Springer, Cham, 2017.
doi: 10.1007/978-3-319-54208-9.![]() ![]() ![]() |
[23] |
H. Mitake and H.V. Tran, On uniqueness sets of additive eigenvalue problems and applications, Proc. Amer. Math. Soc., 146 (2018), 4813-4822.
doi: 10.1090/proc/14152.![]() ![]() ![]() |
[24] |
G. Namah and J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.
doi: 10.1080/03605309908821451.![]() ![]() ![]() |
[25] |
L. J. Zhang, On curvature flow with driving force starting as singular initial curve in the plane, to appear in J. Geom. Anal.
![]() |