
-
Previous Article
Bautin bifurcation in a minimal model of immunoediting
- DCDS-B Home
- This Issue
-
Next Article
Ergodicity of non-autonomous discrete systems with non-uniform expansion
Periodic solutions of differential-algebraic equations
a. | School of Mathematics, Jilin University, Changchun 130012, China |
b. | School of Public Health, Jilin University, Changchun 130021, China |
c. | School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024, China |
$ \begin{equation} \nonumber h'(t, x) = f(t, x), \; \; ' = \dfrac{d}{{dt}}, \end{equation} $ |
$ h(t, x) = A(t)x(t) $ |
$ h(t, x) $ |
$ f(t, x) $ |
$ T $ |
References:
[1] |
G. Ali, A. Bartel and N. Rotundo,
Index-2 elliptic partial differential-algebraic models for circuits and devices, Journal of Mathemtical Analysis and Applications, 423 (2015), 1348-1369.
doi: 10.1016/j.jmaa.2014.10.065. |
[2] |
R. Altmann,
Index reduction for operator differential-algebraic equations in elastodynamics, Zeitschrift f$\ddot{u}$r Angewandte Mathematik und Mechanik, 93 (2013), 648-664.
doi: 10.1002/zamm.201200125. |
[3] |
U. M. Ascher and P. Lin,
Sequential regularization methods for higher DAEs with constraint singularities: the linear index-$2$ case, SIAM Journal on Numerical Analysis, 33 (1996), 1921-1940.
doi: 10.1137/S0036142993253254. |
[4] |
P. Benner, P. Losse and V. Mehrmann, Numerical Linear Algebra Methods for Linear Differential-Algebraic Equations, Surveys in Differential-algebraic Equations, 3. Springer, Cham, 2015. |
[5] |
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971224. |
[6] |
S. L. Campbell and P. Kunkel,
On the numerical treatment of linear-quadratic optimal control problems for general linear time-varying differential-algebraic equations, Journal of Computational and Applied Mathematics, 242 (2013), 213-231.
doi: 10.1016/j.cam.2012.10.011. |
[7] |
S. Campbell and P. Kunkel,
Solving higher index DAE optimal control problems, Numer. Algebra Control Optim., 6 (2016), 447-472.
doi: 10.3934/naco.2016020. |
[8] |
R. E. Gaines and J. Mawhin,
Ordinary differential equations with nonlinear boundary conditions, Journal of Differential Equations, 26 (1977), 200-222.
doi: 10.1016/0022-0396(77)90191-7. |
[9] |
J. K. Hale and J. Mawhin,
Coincidence degree and periodic solutions of neutral equations, Journal of Differential Equations, 15 (1974), 295-307.
doi: 10.1016/0022-0396(74)90081-3. |
[10] |
M. M. Hosseini,
Numerical solution of linear high-index DAEs, Computational Science and its Applications—ICCSA 2004, Part III, Lecture Notes in Comput. Sci., Springer, Berlin, 3045 (2004), 676-685.
doi: 10.1007/978-3-540-24767-8_71. |
[11] |
M. Hosseini,
An efficient index reduction method for differential-algebraic equations, Global Journal of Pure and Applied Mathematics, 3 (2007), 113-124.
|
[12] |
M. A. Krasnosel'skii, Translation Along Trajectories of Differential Equations, American Mathematics Society, Providence, 1938. |
[13] |
M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984. |
[14] |
Y. Li, X. G. Lu and Y. Su,
A homotopy method of finding periodic solutions for ordinary differential equations from the upper and lower solutions, Nonlinear Analysis. Theory, Methods & Applications, 24 (1995), 1027-1038.
doi: 10.1016/0362-546X(94)00129-6. |
[15] |
Y. Li and X. R. Lü,
Continuation theorems for boundary value problems, Journal of Mathematical Analysis and Applications, 190 (1995), 32-49.
doi: 10.1006/jmaa.1995.1063. |
[16] |
J. Mawhin, Topological Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, 1979. |
[17] |
J. Mawhin and J. R. Ward,
Guiding-like functions for periodic or bounded solutions of ordinary differential equations, Discrete and Continuous Dynamical Systems. Series A, 8 (2002), 39-54.
doi: 10.3934/dcds.2002.8.39. |
[18] |
R. N. Methekar, V. Ramadesigan, J. C. Pirkle Jr. and V. R. Subramanian,
A perturbation approach for consistent initialization of index-1 explicit differential-algebraic equations arising from battery model simulations, Computers and Chemical Engineering, 35 (2011), 2227-2234.
doi: 10.1016/j.compchemeng.2011.01.003. |
[19] |
D. L. Michels and M. Desbrun,
A semi-analytical approach to molecular dynamics, Journal of Computational Physics, 303 (2015), 336-354.
doi: 10.1016/j.jcp.2015.10.009. |
[20] |
C. Pöll and I. Hafner,
Index reduction and regularisation methods for multibody systems, IFAC-Papers OnLine, 48 (2015), 306-311.
doi: 10.1016/j.ifacol.2015.05.150. |
[21] |
Y. Pomeau,
On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions, Comptes Redus Mécanique, 346 (2018), 184-197.
doi: 10.1016/j.crme.2017.12.004. |
[22] |
P. Stechlinski, M. Patrascu and P. I. Barton,
Nonsmooth differential-algebraic equations in chemical engineering, Computers and Chemical Engineerig, 114 (2018), 52-68.
doi: 10.1016/j.compchemeng.2017.10.031. |
[23] |
M. Takamatsu and S. Iwata,
Index reduction for differential-algebraic equations by substitution method, Linear Algebra and Its Applications, 429 (2008), 2268-2277.
doi: 10.1016/j.laa.2008.06.025. |
show all references
References:
[1] |
G. Ali, A. Bartel and N. Rotundo,
Index-2 elliptic partial differential-algebraic models for circuits and devices, Journal of Mathemtical Analysis and Applications, 423 (2015), 1348-1369.
doi: 10.1016/j.jmaa.2014.10.065. |
[2] |
R. Altmann,
Index reduction for operator differential-algebraic equations in elastodynamics, Zeitschrift f$\ddot{u}$r Angewandte Mathematik und Mechanik, 93 (2013), 648-664.
doi: 10.1002/zamm.201200125. |
[3] |
U. M. Ascher and P. Lin,
Sequential regularization methods for higher DAEs with constraint singularities: the linear index-$2$ case, SIAM Journal on Numerical Analysis, 33 (1996), 1921-1940.
doi: 10.1137/S0036142993253254. |
[4] |
P. Benner, P. Losse and V. Mehrmann, Numerical Linear Algebra Methods for Linear Differential-Algebraic Equations, Surveys in Differential-algebraic Equations, 3. Springer, Cham, 2015. |
[5] |
K. E. Brenan, S. L. Campbell and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Classics in Applied Mathematics, 14. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971224. |
[6] |
S. L. Campbell and P. Kunkel,
On the numerical treatment of linear-quadratic optimal control problems for general linear time-varying differential-algebraic equations, Journal of Computational and Applied Mathematics, 242 (2013), 213-231.
doi: 10.1016/j.cam.2012.10.011. |
[7] |
S. Campbell and P. Kunkel,
Solving higher index DAE optimal control problems, Numer. Algebra Control Optim., 6 (2016), 447-472.
doi: 10.3934/naco.2016020. |
[8] |
R. E. Gaines and J. Mawhin,
Ordinary differential equations with nonlinear boundary conditions, Journal of Differential Equations, 26 (1977), 200-222.
doi: 10.1016/0022-0396(77)90191-7. |
[9] |
J. K. Hale and J. Mawhin,
Coincidence degree and periodic solutions of neutral equations, Journal of Differential Equations, 15 (1974), 295-307.
doi: 10.1016/0022-0396(74)90081-3. |
[10] |
M. M. Hosseini,
Numerical solution of linear high-index DAEs, Computational Science and its Applications—ICCSA 2004, Part III, Lecture Notes in Comput. Sci., Springer, Berlin, 3045 (2004), 676-685.
doi: 10.1007/978-3-540-24767-8_71. |
[11] |
M. Hosseini,
An efficient index reduction method for differential-algebraic equations, Global Journal of Pure and Applied Mathematics, 3 (2007), 113-124.
|
[12] |
M. A. Krasnosel'skii, Translation Along Trajectories of Differential Equations, American Mathematics Society, Providence, 1938. |
[13] |
M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984. |
[14] |
Y. Li, X. G. Lu and Y. Su,
A homotopy method of finding periodic solutions for ordinary differential equations from the upper and lower solutions, Nonlinear Analysis. Theory, Methods & Applications, 24 (1995), 1027-1038.
doi: 10.1016/0362-546X(94)00129-6. |
[15] |
Y. Li and X. R. Lü,
Continuation theorems for boundary value problems, Journal of Mathematical Analysis and Applications, 190 (1995), 32-49.
doi: 10.1006/jmaa.1995.1063. |
[16] |
J. Mawhin, Topological Methods in Nonlinear Boundary Value Problems, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, 1979. |
[17] |
J. Mawhin and J. R. Ward,
Guiding-like functions for periodic or bounded solutions of ordinary differential equations, Discrete and Continuous Dynamical Systems. Series A, 8 (2002), 39-54.
doi: 10.3934/dcds.2002.8.39. |
[18] |
R. N. Methekar, V. Ramadesigan, J. C. Pirkle Jr. and V. R. Subramanian,
A perturbation approach for consistent initialization of index-1 explicit differential-algebraic equations arising from battery model simulations, Computers and Chemical Engineering, 35 (2011), 2227-2234.
doi: 10.1016/j.compchemeng.2011.01.003. |
[19] |
D. L. Michels and M. Desbrun,
A semi-analytical approach to molecular dynamics, Journal of Computational Physics, 303 (2015), 336-354.
doi: 10.1016/j.jcp.2015.10.009. |
[20] |
C. Pöll and I. Hafner,
Index reduction and regularisation methods for multibody systems, IFAC-Papers OnLine, 48 (2015), 306-311.
doi: 10.1016/j.ifacol.2015.05.150. |
[21] |
Y. Pomeau,
On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions, Comptes Redus Mécanique, 346 (2018), 184-197.
doi: 10.1016/j.crme.2017.12.004. |
[22] |
P. Stechlinski, M. Patrascu and P. I. Barton,
Nonsmooth differential-algebraic equations in chemical engineering, Computers and Chemical Engineerig, 114 (2018), 52-68.
doi: 10.1016/j.compchemeng.2017.10.031. |
[23] |
M. Takamatsu and S. Iwata,
Index reduction for differential-algebraic equations by substitution method, Linear Algebra and Its Applications, 429 (2008), 2268-2277.
doi: 10.1016/j.laa.2008.06.025. |




[1] |
Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991 |
[2] |
Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differential-algebraic equations. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 151-179. doi: 10.3934/naco.2014.4.151 |
[3] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[4] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[5] |
Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 |
[6] |
Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610 |
[7] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[8] |
Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861 |
[9] |
Liming Ling. The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1975-2010. doi: 10.3934/dcdss.2016081 |
[10] |
Jan Sieber. Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2607-2651. doi: 10.3934/dcds.2012.32.2607 |
[11] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[12] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[13] |
Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017 |
[14] |
Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003 |
[15] |
Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385 |
[16] |
P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 |
[17] |
Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765 |
[18] |
Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971 |
[19] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
[20] |
Peter Hinow, Edward A. Rietman, Sara Ibrahim Omar, Jack A. Tuszyński. Algebraic and topological indices of molecular pathway networks in human cancers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1289-1302. doi: 10.3934/mbe.2015.12.1289 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]