
-
Previous Article
Critical and super-critical abstract parabolic equations
- DCDS-B Home
- This Issue
-
Next Article
Traveling waves for a nonlocal dispersal vaccination model with general incidence
An SICR rumor spreading model in heterogeneous networks
1. | School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China |
2. | Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Taiyuan 030006, China |
3. | Complex System Research Center, Shanxi University, Taiyuan 030006, China |
This article discusses the spread of rumors in heterogeneous networks. Using the probability generating function method and the approximation theory, we establish an SICR rumor model and calculate the threshold conditions for the outbreak of the rumor. We also compare the speed of the rumors spreading with different initial conditions. The numerical simulations of the SICR model in this paper fit well with the stochastic simulations, which means that the model is reliable. Moreover the effects of the parameters in the model on the transmission of rumors are studied numerically.
References:
[1] |
L. Buzna, K. Peters and D. Helbing, Modelling the dynamics of disaster spreading in networks, Physica A, 363 (2006), 132-140. Google Scholar |
[2] |
D. J. Daley and D. G. Kendall,
Stochastic rumours, Ima Journal of Applied Mathematics, 1 (1965), 42-55.
doi: 10.1093/imamat/1.1.42. |
[3] |
L.-A. Huo, P. Q. Huang and X. Fang,
An interplay model for authorities' actions and rumor spreading in emergency event, Physica A, 390 (2011), 3267-3274.
doi: 10.1016/j.physa.2011.05.008. |
[4] |
L. A. Huo, L. Wang, N. X. Song, C. Y. Ma and B. He,
Rumor spreading model considering the activity of spreaders in the homogeneous network, Physica A, 468 (2017), 855-865.
doi: 10.1016/j.physa.2016.11.039. |
[5] |
R. L. Jie, J. Qiao, G. J. Xu and Y. Y. Meng,
A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions, Physica A, 454 (2016), 129-142.
doi: 10.1016/j.physa.2016.02.048. |
[6] |
C. Lefévre and P. Picard,
Distribution of the final extent of a rumour process, Journal of Applied Probability, 31 (1994), 244-249.
doi: 10.2307/3215250. |
[7] |
J. X. Li, J. Wang and Z. Jin,
SIR dynamics in random networks with communities, Journal of Mathematical Biology, 77 (2018), 1117-1151.
doi: 10.1007/s00285-018-1247-5. |
[8] |
Q. M. Liu, T. Li and M. C. Su,
The analysis of an SEIR rumor propagation model on heterogeneous network, Physica A, 469 (2017), 372-380.
doi: 10.1016/j.physa.2016.11.067. |
[9] |
K. Ma, W. H. Li, Q. T. Guo, X. Q. Zheng, Z. M. Zheng, C. Gao and S. T. Tang,
Information spreading in complex networks with participation of independent spreaders, Physica A, 492 (2018), 21-27.
doi: 10.1016/j.physa.2017.09.052. |
[10] |
H. Matsuda, N. Ogita, A. Sasaki and K. Sato,
Statistical mechanics of population: The lattice Lotka-Volterra model, Progress of Theoretical Physics, 88 (1992), 1035-1049.
doi: 10.1143/ptp/88.6.1035. |
[11] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130.
doi: 10.1103/PhysRevE.69.066130. |
[12] |
M. Nekovee, Y. Moreno, G. Bianconi and M. Marsili,
Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.
doi: 10.1016/j.physa.2006.07.017. |
[13] |
M. E. J. Newman, S. Forrest and J. Balthrop, Email networks and the spread of computer viruses, Physical Review E, 66 (2002), 035101.
doi: 10.1103/PhysRevE.66.035101. |
[14] |
Z. Qian, S. T. Tang, X. Zhang and Z. M. Zheng,
The independent spreaders involved SIR Rumor model in complex networks, Physica A, 429 (2015), 95-102.
doi: 10.1016/j.physa.2015.02.022. |
[15] |
F. Roshani and Y. Naimi, Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading in complex social networks, Physical Review E, 85 (2012), 036109. Google Scholar |
[16] |
Z. Y. Ruan, M. Tang and Z. H. Liu, Epidemic spreading with information-driven vaccination, Physical Review E, 86 (2012), 036117.
doi: 10.1103/PhysRevE.86.036117. |
[17] |
E. Volz,
SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 56 (2008), 293-310.
doi: 10.1007/s00285-007-0116-4. |
[18] |
C. Wan, T. Li and Y. Wang, Rumor Spreading of a SICS Model on complex social networks with counter mechanism, Open Access Library Journal, 03 (2016), 1-11. Google Scholar |
[19] |
J. J. Wang, L. J. Zhao and R. B. Huang,
2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.
doi: 10.1016/j.physa.2014.06.053. |
[20] |
J. J. Wang, L. J. Zhao and R. B. Huang,
SIRaRu rumor spreading model in complex networks, Physica A, 398 (2014), 43-55.
doi: 10.1016/j.physa.2013.12.004. |
[21] |
Y. Wang, X. Yang and Y. Han, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar |
[22] |
L.-L. Xia, G.-P. Jiang, B. Song and Y.-R. Song,
Rumor spreading model considering hesitating mechanism in complex social networks, Physica A, 437 (2015), 295-303.
doi: 10.1016/j.physa.2015.05.113. |
[23] |
Y. L. Zan, J. L. Wu, P. Li and Q. L. Yu,
SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.
doi: 10.1016/j.physa.2014.03.021. |
[24] |
D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901.
doi: 10.1103/PhysRevE.64.050901. |
[25] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908.
doi: 10.1103/PhysRevE.65.041908. |
[26] |
L. J. Zhao, X. Y. Qiu, X. L. Wang and J. J. Wang,
Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks, Physica A, 392 (2013), 987-994.
doi: 10.1016/j.physa.2012.10.031. |
[27] |
L. J. Zhao, J. J. Wang, Y. C. Chen, Q. Wang, J. J. Cheng and H. X. Cui,
SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453.
doi: 10.1016/j.physa.2011.12.008. |
[28] |
L. Zhu and Y. G. Wang,
Rumor spreading model with noise interference in complex social networks, Physica A, 469 (2017), 750-760.
doi: 10.1016/j.physa.2016.11.119. |
show all references
References:
[1] |
L. Buzna, K. Peters and D. Helbing, Modelling the dynamics of disaster spreading in networks, Physica A, 363 (2006), 132-140. Google Scholar |
[2] |
D. J. Daley and D. G. Kendall,
Stochastic rumours, Ima Journal of Applied Mathematics, 1 (1965), 42-55.
doi: 10.1093/imamat/1.1.42. |
[3] |
L.-A. Huo, P. Q. Huang and X. Fang,
An interplay model for authorities' actions and rumor spreading in emergency event, Physica A, 390 (2011), 3267-3274.
doi: 10.1016/j.physa.2011.05.008. |
[4] |
L. A. Huo, L. Wang, N. X. Song, C. Y. Ma and B. He,
Rumor spreading model considering the activity of spreaders in the homogeneous network, Physica A, 468 (2017), 855-865.
doi: 10.1016/j.physa.2016.11.039. |
[5] |
R. L. Jie, J. Qiao, G. J. Xu and Y. Y. Meng,
A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions, Physica A, 454 (2016), 129-142.
doi: 10.1016/j.physa.2016.02.048. |
[6] |
C. Lefévre and P. Picard,
Distribution of the final extent of a rumour process, Journal of Applied Probability, 31 (1994), 244-249.
doi: 10.2307/3215250. |
[7] |
J. X. Li, J. Wang and Z. Jin,
SIR dynamics in random networks with communities, Journal of Mathematical Biology, 77 (2018), 1117-1151.
doi: 10.1007/s00285-018-1247-5. |
[8] |
Q. M. Liu, T. Li and M. C. Su,
The analysis of an SEIR rumor propagation model on heterogeneous network, Physica A, 469 (2017), 372-380.
doi: 10.1016/j.physa.2016.11.067. |
[9] |
K. Ma, W. H. Li, Q. T. Guo, X. Q. Zheng, Z. M. Zheng, C. Gao and S. T. Tang,
Information spreading in complex networks with participation of independent spreaders, Physica A, 492 (2018), 21-27.
doi: 10.1016/j.physa.2017.09.052. |
[10] |
H. Matsuda, N. Ogita, A. Sasaki and K. Sato,
Statistical mechanics of population: The lattice Lotka-Volterra model, Progress of Theoretical Physics, 88 (1992), 1035-1049.
doi: 10.1143/ptp/88.6.1035. |
[11] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130.
doi: 10.1103/PhysRevE.69.066130. |
[12] |
M. Nekovee, Y. Moreno, G. Bianconi and M. Marsili,
Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.
doi: 10.1016/j.physa.2006.07.017. |
[13] |
M. E. J. Newman, S. Forrest and J. Balthrop, Email networks and the spread of computer viruses, Physical Review E, 66 (2002), 035101.
doi: 10.1103/PhysRevE.66.035101. |
[14] |
Z. Qian, S. T. Tang, X. Zhang and Z. M. Zheng,
The independent spreaders involved SIR Rumor model in complex networks, Physica A, 429 (2015), 95-102.
doi: 10.1016/j.physa.2015.02.022. |
[15] |
F. Roshani and Y. Naimi, Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading in complex social networks, Physical Review E, 85 (2012), 036109. Google Scholar |
[16] |
Z. Y. Ruan, M. Tang and Z. H. Liu, Epidemic spreading with information-driven vaccination, Physical Review E, 86 (2012), 036117.
doi: 10.1103/PhysRevE.86.036117. |
[17] |
E. Volz,
SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 56 (2008), 293-310.
doi: 10.1007/s00285-007-0116-4. |
[18] |
C. Wan, T. Li and Y. Wang, Rumor Spreading of a SICS Model on complex social networks with counter mechanism, Open Access Library Journal, 03 (2016), 1-11. Google Scholar |
[19] |
J. J. Wang, L. J. Zhao and R. B. Huang,
2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.
doi: 10.1016/j.physa.2014.06.053. |
[20] |
J. J. Wang, L. J. Zhao and R. B. Huang,
SIRaRu rumor spreading model in complex networks, Physica A, 398 (2014), 43-55.
doi: 10.1016/j.physa.2013.12.004. |
[21] |
Y. Wang, X. Yang and Y. Han, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar |
[22] |
L.-L. Xia, G.-P. Jiang, B. Song and Y.-R. Song,
Rumor spreading model considering hesitating mechanism in complex social networks, Physica A, 437 (2015), 295-303.
doi: 10.1016/j.physa.2015.05.113. |
[23] |
Y. L. Zan, J. L. Wu, P. Li and Q. L. Yu,
SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.
doi: 10.1016/j.physa.2014.03.021. |
[24] |
D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901.
doi: 10.1103/PhysRevE.64.050901. |
[25] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908.
doi: 10.1103/PhysRevE.65.041908. |
[26] |
L. J. Zhao, X. Y. Qiu, X. L. Wang and J. J. Wang,
Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks, Physica A, 392 (2013), 987-994.
doi: 10.1016/j.physa.2012.10.031. |
[27] |
L. J. Zhao, J. J. Wang, Y. C. Chen, Q. Wang, J. J. Cheng and H. X. Cui,
SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453.
doi: 10.1016/j.physa.2011.12.008. |
[28] |
L. Zhu and Y. G. Wang,
Rumor spreading model with noise interference in complex social networks, Physica A, 469 (2017), 750-760.
doi: 10.1016/j.physa.2016.11.119. |











Series Symbol | Series Description |
Spreading rate. The constant rate at which a susceptible node | |
becomes an infective node when it contacts an infective node | |
Ignoring rate. The constant rate at which a susceptible node becomes | |
a refractory node when it contacts an infective node | |
Refuting rate. The constant rate at which a susceptible node becomes | |
a counterattack node when it contacts an infective node | |
Stifling rate. The constant rate at which an infective node becomes | |
a refractory node when it contacts another infective or | |
refractory node | |
Persuading rate. The constant rate at which an infective node | |
becomes a refractory node when it contacts a counterattack node | |
The probability that a node will have degree |
|
The probability generating function for the degree distribution |
|
The probability that an arc with an ego in set X has an alter in Y | |
Set of arcs (ego, alter) such that node ego is in set |
|
Fraction of arcs in set |
|
Set of arcs (ego, alter) s.t ego |
|
Fraction of arcs in set |
Series Symbol | Series Description |
Spreading rate. The constant rate at which a susceptible node | |
becomes an infective node when it contacts an infective node | |
Ignoring rate. The constant rate at which a susceptible node becomes | |
a refractory node when it contacts an infective node | |
Refuting rate. The constant rate at which a susceptible node becomes | |
a counterattack node when it contacts an infective node | |
Stifling rate. The constant rate at which an infective node becomes | |
a refractory node when it contacts another infective or | |
refractory node | |
Persuading rate. The constant rate at which an infective node | |
becomes a refractory node when it contacts a counterattack node | |
The probability that a node will have degree |
|
The probability generating function for the degree distribution |
|
The probability that an arc with an ego in set X has an alter in Y | |
Set of arcs (ego, alter) such that node ego is in set |
|
Fraction of arcs in set |
|
Set of arcs (ego, alter) s.t ego |
|
Fraction of arcs in set |
[1] |
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020357 |
[2] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[3] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[4] |
Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021004 |
[5] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[6] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[7] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[8] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[9] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[10] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[11] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[12] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[13] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[14] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[15] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[16] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[17] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[18] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[19] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[20] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]