April  2020, 25(4): 1607-1622. doi: 10.3934/dcdsb.2019242

Investigating the effects of intervention strategies in a spatio-temporal anthrax model

1. 

Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, GA 31793, USA

2. 

Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA

* Corresponding author: bpantha@abac.edu

Received  February 2019 Revised  July 2019 Published  April 2020 Early access  November 2019

In this paper, we extend our previous work on optimal control applied in an anthrax outbreak in wild animals. We use a system of ordinary differential equation (ODE) and partial differential equations (PDEs) to track the change in susceptible, infected and vaccinated animals as well as the infected carcasses. In addition to the assumption that the infected animals and the infected carcasses are the main source of infection, we consider the animal movement by diffusion and see its effects in disease transmission. Two controls: vaccinating susceptible animals and disposing infected carcasses properly are applied in the model and these controls depend on both space and time. We formulate an optimal control problem to investigate the effect of intervention strategies in our spatio-temporal model in controlling the outbreak at minimum cost. Finally some numerical results for the optimal control problem are presented.

Citation: Buddhi Pantha, Judy Day, Suzanne Lenhart. Investigating the effects of intervention strategies in a spatio-temporal anthrax model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1607-1622. doi: 10.3934/dcdsb.2019242
References:
[1]

S. AltizerR. Bartel and B. A. Han, Animal migration and infectious disease risk, Science, 331 (2011), 296-302.  doi: 10.1126/science.1194694.

[2]

Animal Diversity Web, https://animaldiversity.org/, Accessed May 2018.

[3]

J. K. BlackburnA. CurtisT. L. HadfieldB. O'SheaM. A. Mitchell and M. E. Hugh-Jones, Confirmation of Bacillus anthracis from flesh-eating flies collected during a West Texas Anthrax Season, Journel of Wildlife Disease, 46 (2010), 918-922.  doi: 10.7589/0090-3558-46.3.918.

[4]

L. Busch, Bison herd suffers worst anthrax outbreak on record, Northern News Services Online, (2012), http://www.nnsl.com/frames/newspapers/2012-08/aug13\_12bs.html.

[5]

J. R. Castello, Bovids of World: Antelopes, Gazelles, Cattle, Goats, Sheep and Relatives, Prinston University Press, 2016. doi: 10.1515/9781400880652.

[6]

S. Chawla and S. M. Lenhart, Application of optimal control theory to bioremediation, Journal of Computational and Applied Mathematics, 114 (2000), 81-102.  doi: 10.1016/S0377-0427(99)00290-3.

[7]

S. Clegg. P. TurnbullC. Foggin and P. Lindeque, Massive Outbreak of anthrex in wildlife in the Malilangwe Wildlife Reserve, Zimbabwe, The Veterinary Record, 160 (2007), 113-118. 

[8]

Department of Agriculture Forestry and Fisheries, Republic of South Africa, http://http://gadi.agric.za/articles/Furstenburg\_D, Accessed, 2018.

[9]

D. C. Dragon and B. T. Elkin, An overview of early Anthrax Outbreaks in Northern canada: Field reports of the Health of Animals Branch, Agriculture canada 1962-71, Arctic, 54 (2001), 1-104.  doi: 10.14430/arctic761.

[10]

D. Dragon and R. Rennie, The ecology of anthrax spores: Tough but not invincible, Canadian Veterinary Journal, 36 (1995), 295-301. 

[11]

P. van den Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Bioscience, 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[13]

Experience Zimbabwe, http://www.experiencezimbabwe.com/experience/attractions/malilangwe-wildlife-reserve, Accessed, 2018.

[14]

A. FasanellaD. GalanteG. Garofolo and M. Hugh-Jones, Anthrax under valued zoonosis, Veterinary Microbiology, 140 (2010), 318-331. 

[15]

E. M. FevreB. M. de C. BronsvoortK. A. Hamilton and S. Cleaveland, Animal movements and the spread of infectious diseases, Trends in Microbiology, 14 (2006), 125-131.  doi: 10.1016/j.tim.2006.01.004.

[16]

P. R. Furniss and B. D. Hahn, A mathematical model of an anthrax epizootic in the Kruger National Park, Applied Math Modeling, 5 (1981), 130-136.  doi: 10.1016/0307-904X(81)90034-2.

[17]

K. R. Fister, S. Lenhart and J. McNally, Optimizing chemotherapy in an HIV model, Electronic Journal of Differential Equations, 1998 (1998), 12 pp.

[18]

A. Friedman and A.-A. Yakubu, Anthrax epizootic and migration: Persistence or extinction, Mathematical Bioscience, 241 (2013), 137-144.  doi: 10.1016/j.mbs.2012.10.004.

[19]

W. Hackbusch, A numerical method for solving parabolic equations with opposite orientations, Computing, 20 (1978), 229-240.  doi: 10.1007/BF02251947.

[20]

B. D. Hahn and P. R. Furniss, A deterministic model of and anthrax epizootic: Threshold results, Ecological Modelling, 20 (1983), 233-241.  doi: 10.1016/0304-3800(83)90009-1.

[21]

L. Hartfield, Bad year for anthrax outbreaks in US livestock, Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, (2005), http://www.cidrap.umn.edu/news-perspective/2005/08/bad-year-anthrax-outbreaks-us-livestock.

[22]

M. E. Hugh-Jones and V. De Vos, Anthrax and wildlife, Scientific and Technical Review of the Office International des Epizooties, 21 (2003), 359-383.  doi: 10.20506/rst.21.2.1336.

[23] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511608520.
[24]

I. KracalikL. MalaniaM. BroladzeA. NavdarashviliP. mnadzeS. J. Rya and J. Blackburn, Changing livestock vaccination policy alters the epidemiology of human anthrax, Georgia, 2000-2013., Vaccine, 35 (2017), 6283-6289.  doi: 10.1016/j.vaccine.2017.09.081.

[25]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[26]

C. Loehle, Social and behavioral barriers to pathogen transmission in wild animal populations, Clinical & Translational Immunology, 3 (1995), 1-6.  doi: 10.2172/666220.

[27] D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, 162. Academic Press, Inc., London-New York, 1982. 
[28]

The MathWorks Inc, Global optimization toolbox user's guide, Release 2015a, 2015.

[29]

R. Miller Neilan and S. Lenhart, Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons, Journal of Mathematical Analysis and Applications, 378 (2011), 603-619.  doi: 10.1016/j.jmaa.2010.12.035.

[30]

J. S. NishiD. C. DragonB. T. ElkinJ. MitchellT. R. Ellsworth and M. E. Hugh-Jones, Emergency response planning for anthrax outbreaks in bison herds of northern canada, Annals of the New York Academy of Sciences, 969 (2002), 245-250.  doi: 10.1111/j.1749-6632.2002.tb04386.x.

[31]

B. PanthaJ. Day and S. Lenhart, Optimal control applied in an anthrax epizootic model, Journal of Biological Systems, 24 (2016), 495-517.  doi: 10.1142/S021833901650025X.

[32] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4615-3034-3.
[33]

C. M. Saad-RoyP. van den Driessche and A.-A. Yakubu, A mathematical model of anthrax transmission in animal populations, Bulletin of Mathematical Biology, 79 (2017), 303-324.  doi: 10.1007/s11538-016-0238-1.

[34]

A. H. Seydack, C. C. Grant, I. P. Smit, W. J. Vermeulen, J. Baard and N. Zambatis, Large herbivore population performance and climate in a South African semi-arid Savanna, KOEDOE, 54 (2012), a1047. doi: 10.4102/koedoe.v54i1.1047.

[35]

S. V. Shadomy and T. L. Smith, Anthrax, Journal of the American Veterinary Medical Association, 233 (2008), 63-72.  doi: 10.2460/javma.233.1.63.

[36]

J. Simon, Compact sets in the space $L^p(0, T, B)$", Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[37] J. Skellam, The Formulation and Interpretation of Mathematical Models of Diffusionary Processes in Population Biology, The Mathematical Theory of the Dynamics of Biological Populations, Academic Press, 1973. 
[38]

J. Tello and G. Van, The natural history of nyala, Tragelaphus angasi (Mammalia, Bovidae) in Mozambique, Bulletin of the AMNH, Bulletin of American Museum of Natural History, 155 (1975), 6283-6289. 

[39]

Texas Animal Health Commission, Anthrax confirmed in Eadwards county Deer, (2014), http://www.ttha.com/ttha/news/2014/09/08/anthrax-confirmed-in-edwards-county-deer.

[40] P. Turnbill, Anthrax in Animals and Humans, WHO Press, Fourth edition, Geneva, 2008. 
[41]

V. Vos, The ecology of anthrax in the Kruger National Park, Salisbury Medical Bulletin, 68 (1990), 9-23. 

[42]

V. VosG. Rooyen and J. Kloppers, Anthrax immunizations of free ranging roan antelope hippotragus equinus in the Kruger National Park, KOEDOE, 16 (1973), 11-25. 

show all references

References:
[1]

S. AltizerR. Bartel and B. A. Han, Animal migration and infectious disease risk, Science, 331 (2011), 296-302.  doi: 10.1126/science.1194694.

[2]

Animal Diversity Web, https://animaldiversity.org/, Accessed May 2018.

[3]

J. K. BlackburnA. CurtisT. L. HadfieldB. O'SheaM. A. Mitchell and M. E. Hugh-Jones, Confirmation of Bacillus anthracis from flesh-eating flies collected during a West Texas Anthrax Season, Journel of Wildlife Disease, 46 (2010), 918-922.  doi: 10.7589/0090-3558-46.3.918.

[4]

L. Busch, Bison herd suffers worst anthrax outbreak on record, Northern News Services Online, (2012), http://www.nnsl.com/frames/newspapers/2012-08/aug13\_12bs.html.

[5]

J. R. Castello, Bovids of World: Antelopes, Gazelles, Cattle, Goats, Sheep and Relatives, Prinston University Press, 2016. doi: 10.1515/9781400880652.

[6]

S. Chawla and S. M. Lenhart, Application of optimal control theory to bioremediation, Journal of Computational and Applied Mathematics, 114 (2000), 81-102.  doi: 10.1016/S0377-0427(99)00290-3.

[7]

S. Clegg. P. TurnbullC. Foggin and P. Lindeque, Massive Outbreak of anthrex in wildlife in the Malilangwe Wildlife Reserve, Zimbabwe, The Veterinary Record, 160 (2007), 113-118. 

[8]

Department of Agriculture Forestry and Fisheries, Republic of South Africa, http://http://gadi.agric.za/articles/Furstenburg\_D, Accessed, 2018.

[9]

D. C. Dragon and B. T. Elkin, An overview of early Anthrax Outbreaks in Northern canada: Field reports of the Health of Animals Branch, Agriculture canada 1962-71, Arctic, 54 (2001), 1-104.  doi: 10.14430/arctic761.

[10]

D. Dragon and R. Rennie, The ecology of anthrax spores: Tough but not invincible, Canadian Veterinary Journal, 36 (1995), 295-301. 

[11]

P. van den Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Bioscience, 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[12]

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.

[13]

Experience Zimbabwe, http://www.experiencezimbabwe.com/experience/attractions/malilangwe-wildlife-reserve, Accessed, 2018.

[14]

A. FasanellaD. GalanteG. Garofolo and M. Hugh-Jones, Anthrax under valued zoonosis, Veterinary Microbiology, 140 (2010), 318-331. 

[15]

E. M. FevreB. M. de C. BronsvoortK. A. Hamilton and S. Cleaveland, Animal movements and the spread of infectious diseases, Trends in Microbiology, 14 (2006), 125-131.  doi: 10.1016/j.tim.2006.01.004.

[16]

P. R. Furniss and B. D. Hahn, A mathematical model of an anthrax epizootic in the Kruger National Park, Applied Math Modeling, 5 (1981), 130-136.  doi: 10.1016/0307-904X(81)90034-2.

[17]

K. R. Fister, S. Lenhart and J. McNally, Optimizing chemotherapy in an HIV model, Electronic Journal of Differential Equations, 1998 (1998), 12 pp.

[18]

A. Friedman and A.-A. Yakubu, Anthrax epizootic and migration: Persistence or extinction, Mathematical Bioscience, 241 (2013), 137-144.  doi: 10.1016/j.mbs.2012.10.004.

[19]

W. Hackbusch, A numerical method for solving parabolic equations with opposite orientations, Computing, 20 (1978), 229-240.  doi: 10.1007/BF02251947.

[20]

B. D. Hahn and P. R. Furniss, A deterministic model of and anthrax epizootic: Threshold results, Ecological Modelling, 20 (1983), 233-241.  doi: 10.1016/0304-3800(83)90009-1.

[21]

L. Hartfield, Bad year for anthrax outbreaks in US livestock, Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, (2005), http://www.cidrap.umn.edu/news-perspective/2005/08/bad-year-anthrax-outbreaks-us-livestock.

[22]

M. E. Hugh-Jones and V. De Vos, Anthrax and wildlife, Scientific and Technical Review of the Office International des Epizooties, 21 (2003), 359-383.  doi: 10.20506/rst.21.2.1336.

[23] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511608520.
[24]

I. KracalikL. MalaniaM. BroladzeA. NavdarashviliP. mnadzeS. J. Rya and J. Blackburn, Changing livestock vaccination policy alters the epidemiology of human anthrax, Georgia, 2000-2013., Vaccine, 35 (2017), 6283-6289.  doi: 10.1016/j.vaccine.2017.09.081.

[25]

S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, FL, 2007.

[26]

C. Loehle, Social and behavioral barriers to pathogen transmission in wild animal populations, Clinical & Translational Immunology, 3 (1995), 1-6.  doi: 10.2172/666220.

[27] D. L. Lukes, Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, 162. Academic Press, Inc., London-New York, 1982. 
[28]

The MathWorks Inc, Global optimization toolbox user's guide, Release 2015a, 2015.

[29]

R. Miller Neilan and S. Lenhart, Optimal vaccine distribution in a spatiotemporal epidemic model with an application to rabies and raccoons, Journal of Mathematical Analysis and Applications, 378 (2011), 603-619.  doi: 10.1016/j.jmaa.2010.12.035.

[30]

J. S. NishiD. C. DragonB. T. ElkinJ. MitchellT. R. Ellsworth and M. E. Hugh-Jones, Emergency response planning for anthrax outbreaks in bison herds of northern canada, Annals of the New York Academy of Sciences, 969 (2002), 245-250.  doi: 10.1111/j.1749-6632.2002.tb04386.x.

[31]

B. PanthaJ. Day and S. Lenhart, Optimal control applied in an anthrax epizootic model, Journal of Biological Systems, 24 (2016), 495-517.  doi: 10.1142/S021833901650025X.

[32] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.  doi: 10.1007/978-1-4615-3034-3.
[33]

C. M. Saad-RoyP. van den Driessche and A.-A. Yakubu, A mathematical model of anthrax transmission in animal populations, Bulletin of Mathematical Biology, 79 (2017), 303-324.  doi: 10.1007/s11538-016-0238-1.

[34]

A. H. Seydack, C. C. Grant, I. P. Smit, W. J. Vermeulen, J. Baard and N. Zambatis, Large herbivore population performance and climate in a South African semi-arid Savanna, KOEDOE, 54 (2012), a1047. doi: 10.4102/koedoe.v54i1.1047.

[35]

S. V. Shadomy and T. L. Smith, Anthrax, Journal of the American Veterinary Medical Association, 233 (2008), 63-72.  doi: 10.2460/javma.233.1.63.

[36]

J. Simon, Compact sets in the space $L^p(0, T, B)$", Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.

[37] J. Skellam, The Formulation and Interpretation of Mathematical Models of Diffusionary Processes in Population Biology, The Mathematical Theory of the Dynamics of Biological Populations, Academic Press, 1973. 
[38]

J. Tello and G. Van, The natural history of nyala, Tragelaphus angasi (Mammalia, Bovidae) in Mozambique, Bulletin of the AMNH, Bulletin of American Museum of Natural History, 155 (1975), 6283-6289. 

[39]

Texas Animal Health Commission, Anthrax confirmed in Eadwards county Deer, (2014), http://www.ttha.com/ttha/news/2014/09/08/anthrax-confirmed-in-edwards-county-deer.

[40] P. Turnbill, Anthrax in Animals and Humans, WHO Press, Fourth edition, Geneva, 2008. 
[41]

V. Vos, The ecology of anthrax in the Kruger National Park, Salisbury Medical Bulletin, 68 (1990), 9-23. 

[42]

V. VosG. Rooyen and J. Kloppers, Anthrax immunizations of free ranging roan antelope hippotragus equinus in the Kruger National Park, KOEDOE, 16 (1973), 11-25. 

Figure 1.  Simulation results for model (1)-(4) without control $ u_1 = u_2 = 0 $. The initial population of susceptible and infected animals are considered to be uniformly distributed in $ 1\le x\le 34 $ and $ 27\le x\le 31 $ respectively while only one initial carcass is considered near an end of the domain, $ 29\le x\le 30 $. The figures in the first row show the plots for susceptible (left) and infected (right) animals; and the figure in the second row represents the carcasses
Figure 2.  Simulation results for model (1)-(4) with optimal rates of vaccination and optimal carcass disposal rates $ 0\le u_1(x,t)\le 0.027,\; \; \text{and}\; \; 0\le u_2(x,t)\le 0.5. $. The initial population of susceptible and infected animals are considered to be uniformly distributed in $ 1\le x\le 34 $ and $ 27\le x\le 31 $ respectively while only one initial carcass is considered near an end of the domain, $ 29\le x\le30 $. The two plots in the first row represent the concentrations of susceptible(left) and infected (right) animals. The plots in the second row represents the concentrations of the infected carcasses(left) and the vaccinated animals(right). The last row represents the vaccination (left) and carcass disposal(right) rates
Table 1.  The model parameters, their description, values and units
Parm. Description Values Units
$ r $ Intrinsic growth rate of healthy animals $ 5.052\times 10^{-4} $ day$ ^{-1} $
$ \gamma $ Disease induced death rate of infecteds $ \frac{1}{7.5} $ day$ ^{-1} $
$ \alpha $ Carcass feeding rate by scavengers $ 0 $ animal$ ^{-1} $ day$ ^{-1} $
$ K $ Carrying capacity of animals 2000 animal
$ p $ Carcass decay rate $ 0.02816 $ day$ ^{-1} $
$ d $ Diffusion rate of healthy animals $ 0.12 $ $ km^2 $ day$ ^{-1} $
$ d_1 $ Diffusion rate of infected animals $ 0.024 $ $ km^2 $ day$ ^{-1} $
$ \theta_c $ Disease transmission rate from carcasses $ 1.65\times 10^{-3} $ carcass$ ^{-1} $ day$ ^{-1} $
$ \theta_i $ Disease transmission rate from infected animals $ 2.05\times 10^{-2} $ animal$ ^{-1} $ day$ ^{-1} $
Parm. Description Values Units
$ r $ Intrinsic growth rate of healthy animals $ 5.052\times 10^{-4} $ day$ ^{-1} $
$ \gamma $ Disease induced death rate of infecteds $ \frac{1}{7.5} $ day$ ^{-1} $
$ \alpha $ Carcass feeding rate by scavengers $ 0 $ animal$ ^{-1} $ day$ ^{-1} $
$ K $ Carrying capacity of animals 2000 animal
$ p $ Carcass decay rate $ 0.02816 $ day$ ^{-1} $
$ d $ Diffusion rate of healthy animals $ 0.12 $ $ km^2 $ day$ ^{-1} $
$ d_1 $ Diffusion rate of infected animals $ 0.024 $ $ km^2 $ day$ ^{-1} $
$ \theta_c $ Disease transmission rate from carcasses $ 1.65\times 10^{-3} $ carcass$ ^{-1} $ day$ ^{-1} $
$ \theta_i $ Disease transmission rate from infected animals $ 2.05\times 10^{-2} $ animal$ ^{-1} $ day$ ^{-1} $
[1]

Ștefana-Lucia Aniţa. Optimal control for stochastic differential equations and related Kolmogorov equations. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022023

[2]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[3]

Robert J. Kipka, Yuri S. Ledyaev. Optimal control of differential inclusions on manifolds. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4455-4475. doi: 10.3934/dcds.2015.35.4455

[4]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control and Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[5]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[6]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[7]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[8]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[9]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[10]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107

[12]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[13]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[14]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021020

[15]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[16]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[17]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[18]

Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 569-581. doi: 10.3934/dcdsb.2021055

[19]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[20]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control and Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (393)
  • HTML views (208)
  • Cited by (0)

Other articles
by authors

[Back to Top]