
-
Previous Article
Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process
- DCDS-B Home
- This Issue
-
Next Article
Preface
Multiplicity results for fourth order problems related to the theory of deformations beams
1. | Departamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain |
2. | Faculté des Sciences de Tunis, Université de Tunis El-Manar, Campus Universitaire 2092 - El Manar, Tunisie |
The main purpose of this paper is to establish the existence and multiplicity of positive solutions for a fourth-order boundary value problem with integral condition. By using a new technique of construct a positive cone, we apply the Krasnoselskii compression/expansion and Leggett-Williams fixed point theorems in cones to show our multiplicity results. Finally, a particular case is studied, and the existence of multiple solutions is proved for two different particular functions.
References:
[1] |
A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426.
doi: 10.1016/S0022-247X(86)80006-3. |
[2] |
Z. B. Bai and H. Y. Wang,
On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368.
doi: 10.1016/S0022-247X(02)00071-9. |
[3] |
G. Bonanno and B. Di Bella,
A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.
doi: 10.1016/j.jmaa.2008.01.049. |
[4] |
A. Cabada and C. Fernández-Gómez,
Constant sign solutions of two-point fourth order problems, Appl. Math. Comput., 263 (2015), 122-133.
doi: 10.1016/j.amc.2015.03.112. |
[5] |
A. Cabada, J. A. Cid and B. Máquez-Villamarín,
Computation of Green's functions for boundary value problems with Mathematica, Appl. Math. Comput., 219 (2012), 1919-1936.
doi: 10.1016/j.amc.2012.08.035. |
[6] |
A. Cabada, J. Á. Cid and L. Sanchez,
Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal., 67 (2007), 1599-1612.
doi: 10.1016/j.na.2006.08.002. |
[7] |
A. Cabada, Green's Functions in the Theory of Ordinary Differential Equations, SpringerBriefs in Mathematics, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9506-2. |
[8] |
A. Cabada and L. Saavedra, The eigenvalue characterization for the constant sign Green's functions of (k, n-k) problems, Bound. Value Probl., 2016 (2016), 35 pp.
doi: 10.1186/s13661-016-0547-1. |
[9] |
A. Cabada and L. Saavedra, Characterization of constant sign Green's function for a two-point boundary-value problem by means of spectral theory, Electron. J. Differential Equations, 2017 (2017), 96 pp. |
[10] |
W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971. |
[11] |
J. M. Davis and J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundaryvalue problems, Panamer. Math. J., 8 (1998), 23–35. |
[12] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[13] |
J. R. Graef, J. Henderson and B. Yang, Positive solutions to a fourth-order three point boundary value problem, Discrete Contin. Dyn. Syst., (2009), 269–275. |
[14] |
C. P. Gupta,
Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304.
doi: 10.1080/00036818808839715. |
[15] |
R. W. Leggett and L. R. Williams,
Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.
doi: 10.1512/iumj.1979.28.28046. |
[16] |
R. Y. Ma, J. H. Zhang and F. M. Shengmao,
The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422.
doi: 10.1006/jmaa.1997.5639. |
[17] |
E. L. Reiss, A. J. Callegari and D. S. Ahluwalia, Ordinary Differential Equations with Applications, Holt, Rhinehart and Winston, New York, 1976. Google Scholar |
[18] |
S. Timoshenko, Strength of Materials, Van Nostrand, 1955. Google Scholar |
[19] |
S. P. Timoshenko and S. W. Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959. Google Scholar |
[20] |
J. R. L. Webb and G. Infante,
Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006), 673-693.
doi: 10.1112/S0024610706023179. |
[21] |
J. R. L. Webb and G. Infante,
Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45-67.
doi: 10.1007/s00030-007-4067-7. |
show all references
References:
[1] |
A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426.
doi: 10.1016/S0022-247X(86)80006-3. |
[2] |
Z. B. Bai and H. Y. Wang,
On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368.
doi: 10.1016/S0022-247X(02)00071-9. |
[3] |
G. Bonanno and B. Di Bella,
A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.
doi: 10.1016/j.jmaa.2008.01.049. |
[4] |
A. Cabada and C. Fernández-Gómez,
Constant sign solutions of two-point fourth order problems, Appl. Math. Comput., 263 (2015), 122-133.
doi: 10.1016/j.amc.2015.03.112. |
[5] |
A. Cabada, J. A. Cid and B. Máquez-Villamarín,
Computation of Green's functions for boundary value problems with Mathematica, Appl. Math. Comput., 219 (2012), 1919-1936.
doi: 10.1016/j.amc.2012.08.035. |
[6] |
A. Cabada, J. Á. Cid and L. Sanchez,
Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal., 67 (2007), 1599-1612.
doi: 10.1016/j.na.2006.08.002. |
[7] |
A. Cabada, Green's Functions in the Theory of Ordinary Differential Equations, SpringerBriefs in Mathematics, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9506-2. |
[8] |
A. Cabada and L. Saavedra, The eigenvalue characterization for the constant sign Green's functions of (k, n-k) problems, Bound. Value Probl., 2016 (2016), 35 pp.
doi: 10.1186/s13661-016-0547-1. |
[9] |
A. Cabada and L. Saavedra, Characterization of constant sign Green's function for a two-point boundary-value problem by means of spectral theory, Electron. J. Differential Equations, 2017 (2017), 96 pp. |
[10] |
W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971. |
[11] |
J. M. Davis and J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundaryvalue problems, Panamer. Math. J., 8 (1998), 23–35. |
[12] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[13] |
J. R. Graef, J. Henderson and B. Yang, Positive solutions to a fourth-order three point boundary value problem, Discrete Contin. Dyn. Syst., (2009), 269–275. |
[14] |
C. P. Gupta,
Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304.
doi: 10.1080/00036818808839715. |
[15] |
R. W. Leggett and L. R. Williams,
Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.
doi: 10.1512/iumj.1979.28.28046. |
[16] |
R. Y. Ma, J. H. Zhang and F. M. Shengmao,
The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422.
doi: 10.1006/jmaa.1997.5639. |
[17] |
E. L. Reiss, A. J. Callegari and D. S. Ahluwalia, Ordinary Differential Equations with Applications, Holt, Rhinehart and Winston, New York, 1976. Google Scholar |
[18] |
S. Timoshenko, Strength of Materials, Van Nostrand, 1955. Google Scholar |
[19] |
S. P. Timoshenko and S. W. Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959. Google Scholar |
[20] |
J. R. L. Webb and G. Infante,
Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006), 673-693.
doi: 10.1112/S0024610706023179. |
[21] |
J. R. L. Webb and G. Infante,
Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45-67.
doi: 10.1007/s00030-007-4067-7. |
[1] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[2] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[3] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[4] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[5] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[6] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[7] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[8] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[9] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[10] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[11] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[12] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[13] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[14] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[15] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[16] |
Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73 |
[17] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[18] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[19] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[20] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]