• Previous Article
    Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process
February  2020, 25(2): 529-544. doi: 10.3934/dcdsb.2019252

A Favard type theorem for Hurwitz polynomials

1. 

Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C.P. 58048, Morelia, Michoacán, México

2. 

Departamento de Matemática Aplicada Ⅱ, E.E. Aeronáutica e do Espazo, Universidade de Vigo, 32004-Ourense, Spain

* Corresponding author: Abdon E. Choque-Rivero

Dedicated to Prof. Juan J. Nieto on the occasion of his 60th birthday

Received  February 2019 Revised  April 2019 Published  November 2019

A Favard type theorem for Hurwitz polynomials is proposed. This result is a sufficient condition for a sequence of polynomials of increasing degree to be a sequence of Hurwitz polynomials. As in the Favard celebrated theorem, the three-term recurrence relation is used. Some examples of Hurwitz sequences are also presented. Additionally, a characterization of constructing a family of orthogonal polynomials on $ [0, \infty) $ by two couples of numerical sequences $ ({A_{1, j}, B_{1, j}}) $ and $ ({A_{2, j}, B_{2, j}}) $ is stated.

Citation: Abdon E. Choque-Rivero, Iván Area. A Favard type theorem for Hurwitz polynomials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 529-544. doi: 10.3934/dcdsb.2019252
References:
[1]

M. Abramowitz and I. A. Stegun, Stein, Josef Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables, Math. Comp., 24 (1970), 503.  Google Scholar

[2]

P. Batra, Componentwise products of totally non-negative matrices generated by functions in the Laguerre-Pólya class, Applied and computational matrix analysis, Springer Proc. Math. Stat., Springer, Cham, 192 (2017), 151–163.  Google Scholar

[3] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York-London, 1963.   Google Scholar
[4]

T. S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, Vol. 13. Gordon and Breach Science Publishers, New York-London-Paris, 1978.  Google Scholar

[5]

A. E. Choque-Rivero, On Dyukarev's resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials, Linear Algebra Appl., 474 (2015), 44-109.  doi: 10.1016/j.laa.2015.01.027.  Google Scholar

[6]

A. E. Choque-Rivero, On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix polynomials, Linear Algebra Appl., 476 (2015), 56-84.  doi: 10.1016/j.laa.2015.03.001.  Google Scholar

[7]

A. E. Choque-Rivero, The Kharitonov theorem and robust stabilization via orthogonal polynomials, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 86 (2017), 49-78.   Google Scholar

[8]

A. E. Choque-Rivero, Hurwitz polynomials and orthogonal polynomials generated by Routh-Markov parameters, Mediterr. J. Math., 15 (2018), Art. 40, 15 pp. doi: 10.1007/s00009-018-1083-2.  Google Scholar

[9]

B. N. Datta, Application of Hankel matrices of Markov parameters to the solutions of the Routh-Hurwitz and the Schur-Cohn problems, J. Math. Anal. Appl., 68 (1979), 276-290.  doi: 10.1016/0022-247X(79)90115-X.  Google Scholar

[10]

H. Dette and W. J. Studden, Matrix measures, moment spaces and Favard's theorem for the interval [0, 1] and [0, ∞), Linear Algebra Appl., 345 (2002), 169-193.  doi: 10.1016/S0024-3795(01)00493-1.  Google Scholar

[11]

Y. M. Dyukarev, Indeterminacy criteria for the Stieltjes matrix moment problem, Math. Notes, 75 (2004), 66-82.  doi: 10.1023/B:MATN.0000015022.02925.bd.  Google Scholar

[12]

J. Favard, Sur les polynômes de Tchebicheff, C. R. Acad. Sci. Paris, 200 (1935), 2052-2053.   Google Scholar

[13]

F. R. Gantmacher, The Theory of Matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959.  Google Scholar

[14]

Y. Genin, Hurwitz sequences of polynomials, Philips Research Reports, 30 (1975), 89-102.   Google Scholar

[15]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[16]

D. Gómez-UllateN. Kamran and R. Milson, An extension of Bochner's problem: Exceptional invariant subspaces, J. Approx. Theory, 162 (2010), 987-1006.  doi: 10.1016/j.jat.2009.11.002.  Google Scholar

[17]

N. Guglielmi and E. Hairer, Order stars and stability for delay differential equations, Numerische Mathematik, 83 (1999), 371-383.  doi: 10.1007/s002110050454.  Google Scholar

[18]

J. Hale, Theory of Functional Differential Equations, Second edition, Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977.  Google Scholar

[19]

C. V. Hollot, Kharitonov-like results in the space of Markov parameters, IEEE Transactions on Automatic Control, 34 (1989), 536-538.  doi: 10.1109/9.24206.  Google Scholar

[20]

O. Holtz and M. Tyaglov, Structured matrices, continued fractions, and root localization of polynomials, SIAM Rev., 54 (2012), 421-509.  doi: 10.1137/090781127.  Google Scholar

[21]

A. Hurwitz, Uber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Mathematische Annalen, 46 (1895), 273-284.  doi: 10.1007/BF01446812.  Google Scholar

[22]

V. Katsnelson, Stieltjes functions and Hurwitz stable entire functions, Complex Anal. Oper. Theory, 5 (2011), 611-630.  doi: 10.1007/s11785-011-0146-1.  Google Scholar

[23]

M. G. Kreǐn and M. A. Naimark, The method of symmetric and Hermitian forms int the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra, 10 (1981), 265-308.  doi: 10.1080/03081088108817420.  Google Scholar

[24]

M. G. Kreǐn and A. A. Nudel'man, The Markov Moment Problem and Extremal Problems, Mathematical Monographs, Vol. 50. American Mathematical Society, Providence, R.I., 1977.  Google Scholar

[25]

M. M. Postnikov, Stable Polynomials, Nauka, Moscow, 1981,176 pp.  Google Scholar

[26]

M. Prevost and T. Rivoal, Remainder Padé approximants for the exponential function, Constructive Approximation, 25 (2007), 109-123.  doi: 10.1007/s00365-006-0635-6.  Google Scholar

[27]

G. Szegö, Orthogonal Polynomials, Fourth edition, American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., 1975.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Stein, Josef Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables, Math. Comp., 24 (1970), 503.  Google Scholar

[2]

P. Batra, Componentwise products of totally non-negative matrices generated by functions in the Laguerre-Pólya class, Applied and computational matrix analysis, Springer Proc. Math. Stat., Springer, Cham, 192 (2017), 151–163.  Google Scholar

[3] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York-London, 1963.   Google Scholar
[4]

T. S. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and its Applications, Vol. 13. Gordon and Breach Science Publishers, New York-London-Paris, 1978.  Google Scholar

[5]

A. E. Choque-Rivero, On Dyukarev's resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials, Linear Algebra Appl., 474 (2015), 44-109.  doi: 10.1016/j.laa.2015.01.027.  Google Scholar

[6]

A. E. Choque-Rivero, On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix polynomials, Linear Algebra Appl., 476 (2015), 56-84.  doi: 10.1016/j.laa.2015.03.001.  Google Scholar

[7]

A. E. Choque-Rivero, The Kharitonov theorem and robust stabilization via orthogonal polynomials, Visn. Khark. Univ., Ser. Mat. Prykl. Mat. Mekh., 86 (2017), 49-78.   Google Scholar

[8]

A. E. Choque-Rivero, Hurwitz polynomials and orthogonal polynomials generated by Routh-Markov parameters, Mediterr. J. Math., 15 (2018), Art. 40, 15 pp. doi: 10.1007/s00009-018-1083-2.  Google Scholar

[9]

B. N. Datta, Application of Hankel matrices of Markov parameters to the solutions of the Routh-Hurwitz and the Schur-Cohn problems, J. Math. Anal. Appl., 68 (1979), 276-290.  doi: 10.1016/0022-247X(79)90115-X.  Google Scholar

[10]

H. Dette and W. J. Studden, Matrix measures, moment spaces and Favard's theorem for the interval [0, 1] and [0, ∞), Linear Algebra Appl., 345 (2002), 169-193.  doi: 10.1016/S0024-3795(01)00493-1.  Google Scholar

[11]

Y. M. Dyukarev, Indeterminacy criteria for the Stieltjes matrix moment problem, Math. Notes, 75 (2004), 66-82.  doi: 10.1023/B:MATN.0000015022.02925.bd.  Google Scholar

[12]

J. Favard, Sur les polynômes de Tchebicheff, C. R. Acad. Sci. Paris, 200 (1935), 2052-2053.   Google Scholar

[13]

F. R. Gantmacher, The Theory of Matrices. Vols. 1, 2, Chelsea Publishing Co., New York, 1959.  Google Scholar

[14]

Y. Genin, Hurwitz sequences of polynomials, Philips Research Reports, 30 (1975), 89-102.   Google Scholar

[15]

D. Gómez-UllateN. Kamran and R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem, J. Math. Anal. Appl., 359 (2009), 352-367.  doi: 10.1016/j.jmaa.2009.05.052.  Google Scholar

[16]

D. Gómez-UllateN. Kamran and R. Milson, An extension of Bochner's problem: Exceptional invariant subspaces, J. Approx. Theory, 162 (2010), 987-1006.  doi: 10.1016/j.jat.2009.11.002.  Google Scholar

[17]

N. Guglielmi and E. Hairer, Order stars and stability for delay differential equations, Numerische Mathematik, 83 (1999), 371-383.  doi: 10.1007/s002110050454.  Google Scholar

[18]

J. Hale, Theory of Functional Differential Equations, Second edition, Applied Mathematical Sciences, Vol. 3. Springer-Verlag, New York-Heidelberg, 1977.  Google Scholar

[19]

C. V. Hollot, Kharitonov-like results in the space of Markov parameters, IEEE Transactions on Automatic Control, 34 (1989), 536-538.  doi: 10.1109/9.24206.  Google Scholar

[20]

O. Holtz and M. Tyaglov, Structured matrices, continued fractions, and root localization of polynomials, SIAM Rev., 54 (2012), 421-509.  doi: 10.1137/090781127.  Google Scholar

[21]

A. Hurwitz, Uber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt, Mathematische Annalen, 46 (1895), 273-284.  doi: 10.1007/BF01446812.  Google Scholar

[22]

V. Katsnelson, Stieltjes functions and Hurwitz stable entire functions, Complex Anal. Oper. Theory, 5 (2011), 611-630.  doi: 10.1007/s11785-011-0146-1.  Google Scholar

[23]

M. G. Kreǐn and M. A. Naimark, The method of symmetric and Hermitian forms int the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra, 10 (1981), 265-308.  doi: 10.1080/03081088108817420.  Google Scholar

[24]

M. G. Kreǐn and A. A. Nudel'man, The Markov Moment Problem and Extremal Problems, Mathematical Monographs, Vol. 50. American Mathematical Society, Providence, R.I., 1977.  Google Scholar

[25]

M. M. Postnikov, Stable Polynomials, Nauka, Moscow, 1981,176 pp.  Google Scholar

[26]

M. Prevost and T. Rivoal, Remainder Padé approximants for the exponential function, Constructive Approximation, 25 (2007), 109-123.  doi: 10.1007/s00365-006-0635-6.  Google Scholar

[27]

G. Szegö, Orthogonal Polynomials, Fourth edition, American Mathematical Society, Colloquium Publications, Vol. XXIII. American Mathematical Society, Providence, R.I., 1975.  Google Scholar

Figure 1.  Zeros of the polynomials $ f_{n}(z) $ for $ \alpha = \sqrt{2} $ and $ n = 1, 2, 3, 4, 5 $: $ f_{1}(z) $ in black, $ f_{2}(z) $ in blue, $ f_{3}(z) $ in magenta, $ f_{4}(z) $ in orange, and $ f_{5}(z) $ in red
Figure 2.  Zeros of the polynomials $ f_{n}(z) $ for $ n = 1, 2, 3, 4, 5 $: $ f_{1}(z) $ in black color, $ f_{2}(z) $ in blue, $ f_{3}(z) $ in magenta, $ f_{4}(z) $ in orange, and $ f_{5}(z) $ in red
Figure 3.  Zeros of the polynomials $ f_{n}(z) $ for $ \alpha = 3 $ and $ n = 1, 2, 3, 4, 5 $: $ f_{1}(z) $ in black, $ f_{2}(z) $ in blue, $ f_{3}(z) $ in magenta, $ f_{4}(z) $ in orange, and $ f_{5}(z) $ in red
[1]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[2]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[3]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[4]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[5]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[8]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (262)
  • HTML views (131)
  • Cited by (0)

Other articles
by authors

[Back to Top]