February  2020, 25(2): 569-597. doi: 10.3934/dcdsb.2019255

Well-posedness results for fractional semi-linear wave equations

1. 

Departamento de Análise Matemática, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

2. 

Department of Mathematics, Eastern Mediterranean University, Famagusta, Northern Cyprus, via Mersin-10, Turkey

3. 

Departamento de Matemática Aplicada II, E.E. Aeronáutica e do Espazo, Universidade de Vigo, 32004-Ourense, Spain

* Corresponding author: Arran Fernandez

Dedicated to Prof. Juan J. Nieto on the occasion of his 60th birthday

Received  April 2019 Revised  May 2019 Published  November 2019

This work is concerned with well-posedness results for nonlocal semi-linear wave equations involving the fractional Laplacian and fractional derivative operator taken in the sense of Caputo. Representations for solutions, existence of classical solutions, and some $ L^{p} $-estimates are derived, by considering a quasi-stationary elliptic problem that comes from the realisation of the fractional Laplacian as the Dirichlet-to-Neumann map for a non-uniformly elliptic problem posed on a semi-infinite cylinder. We derive some properties such as existence of global weak solutions of the extended semi-linear integro-differential equations.

Citation: Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255
References:
[1]

N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, Contemporary Research in Elliptic PDEs and Related Topics, 2019, 1–105. doi: 10.1007/978-3-030-18921-1_1.  Google Scholar

[2]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.  Google Scholar

[3]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[4]

E. AlvarezC. G. GalV. Keyantuo and M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Analysis, 181 (2019), 24-61.  doi: 10.1016/j.na.2018.10.016.  Google Scholar

[5]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010), 293-315.  doi: 10.1016/j.aim.2009.11.010.  Google Scholar

[6]

D. Baleanu and A. Fernandez, A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 1-12.  doi: 10.14232/ejqtde.2017.1.15.  Google Scholar

[7]

A. BernardisF. J. Martín-ReyesP. R. Stinga and J. L. Torrea, Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Differential Equations, 260 (2016), 6333-6362.  doi: 10.1016/j.jde.2015.12.042.  Google Scholar

[8]

M. Š. Birman and M. Z. Solomjak, Spektralnaya Teoriya Samosopryazhennykh Operatorov v Gilbertovom Prostranstve, Leningrad. Univ., Leningrad, 1980. Google Scholar

[9]

C. Bucur and F. Ferrari, An extension problem for the fractional derivative defined by Marchaud, Fract. Calc. Appl. Anal., 19 (2016), 867-887.  doi: 10.1515/fca-2016-0047.  Google Scholar

[10]

X. Cabré and J. G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[11]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eq., 32 2007, 1245–1260. doi: 10.1080/03605300600987306.  Google Scholar

[12]

A. CapellaJ. DávilaL. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations, 36 (2011), 1353-1384.  doi: 10.1080/03605302.2011.562954.  Google Scholar

[13]

M. D'Abbicco, M. R. Ebert and T. Picon, Global existence of small data solutions to the semilinear fractional wave equation, New Trends in Analysis and Interdisciplinary Applications, Trends Math. Res. Perspect., Birkhäuser/Springer, Cham, (2017), 465–471. doi: 10.1007/978-3-319-48812-7_59.  Google Scholar

[14]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[15]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.  Google Scholar

[16]

S. Dipierro and E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: From delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870.  doi: 10.1007/s11538-018-0437-z.  Google Scholar

[17]

J.-D. Djida and A. Fernandez, Interior regularity estimates for a degenerate elliptic equation with mixed boundary conditions, Axioms, 7 (2018), 1-16.  doi: 10.3390/axioms7030065.  Google Scholar

[18]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[20]

P. FelmerA. Quaas and J. G. Tan, Positive solutions of nonlinear schrödinger equation with the fractional laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[21]

A. Fernandez, An elliptic regularity theorem for fractional partial differential operators, Comp. Appl. Math., 37 (2018), 5542-5553.  doi: 10.1007/s40314-018-0618-2.  Google Scholar

[22]

Y. Fujita, Energy inequalities for integro-partial differential equations with Riemann-Liouville integrals, SIAM J. Math. Anal., 23 (1992), 1182-118.  doi: 10.1137/0523066.  Google Scholar

[23]

Y. V. Gorbatenko, Existence and uniqueness of mild solutions of second order semilinear differential equations in Banach space, Methods Funct. Anal. Topology, 17 (2011), 1-9.   Google Scholar

[24]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[25]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[26]

H. Hirata and C. X. Miao, Space-time estimates of linear flow and application to some nonlinear integro-differential equations corresponding to fractional-order time derivative., Adv. Differential Equations, 7 (2002), 217-236.   Google Scholar

[27]

Y. H. Huang, Explicit Barenblatt profiles for fractional porous medium equations, Bulletin of the London Mathematical Society, 46 (2014), 857-869.  doi: 10.1112/blms/bdu045.  Google Scholar

[28]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behaviour for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.  Google Scholar

[29]

V. Keyantuo, C. Lizama and M. Warma, Existence, regularity and representation of solutions of time fractional wave equations, Electron. J. Differential Equations, 2017 (2017), 42 pp.  Google Scholar

[30]

Y. Kian and M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20 (2017), 117-138.  doi: 10.1515/fca-2017-0006.  Google Scholar

[31]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[32]

K.-H. Kim and S. Lim, Asymptotic behaviours of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.  doi: 10.4134/JKMS.j150343.  Google Scholar

[33]

A. N. Kochubeǐ, Diffusion of fractional order, Differ. Equ., 26 (1990), 485-492.   Google Scholar

[34]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[35]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. III, Die Grundlehren der mathematischen Wissenschaften, Band 183. Springer-Verlag, New York-Heidelberg, 1973.  Google Scholar

[36]

L. Maligranda, On interpolation of nonlinear operators, Comment. Math. Prace Mat., 28 (1989), 253-275.   Google Scholar

[37]

L. Maligranda, Marcinkiewicz interpolation theorem and marcinkiewicz spaces, Wiad. Mat., 48 (2012), 157-171.  doi: 10.14708/wm.v48i2.328.  Google Scholar

[38] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[39]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.  doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[40]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[41]

A. Niang, Boundary regularity for a degenerate elliptic equation with mixed boundary conditions, Commun. Pure Appl. Anal., 18 (2019), 107-128.  doi: 10.3934/cpaa.2019007.  Google Scholar

[42]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.  doi: 10.1007/s10208-014-9208-x.  Google Scholar

[43]

E. Otárola and A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal., 21 (2018), 1262-1293.  doi: 10.1515/fca-2018-0067.  Google Scholar

[44]

A. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. II, Math. Nach., 291 (2018), 1859-1892.  doi: 10.1002/mana.201700144.  Google Scholar

[45]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[46]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[47]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[48]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Part. Diff. Eqs., 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar

[49]

L. Tartar, An introduction to Sobolev spaces and interpolation spaces., Lecture Notes of the Unione Matematica Italiana, volume 3, Springer, Berlin, 2007.  Google Scholar

[50]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics, 1736. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103908.  Google Scholar

[51]

E. Valdinoci, From the lung jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44.   Google Scholar

[52]

J. L. Vázquez and B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type, J. Math. Pures Appl., 101 (2014), 553-582.  doi: 10.1016/j.matpur.2013.07.001.  Google Scholar

[53] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.   Google Scholar

show all references

References:
[1]

N. Abatangelo and E. Valdinoci, Getting acquainted with the fractional Laplacian, Contemporary Research in Elliptic PDEs and Related Topics, 2019, 1–105. doi: 10.1007/978-3-030-18921-1_1.  Google Scholar

[2]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.  Google Scholar

[3]

M. AllenL. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.  doi: 10.1007/s00205-016-0969-z.  Google Scholar

[4]

E. AlvarezC. G. GalV. Keyantuo and M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Analysis, 181 (2019), 24-61.  doi: 10.1016/j.na.2018.10.016.  Google Scholar

[5]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010), 293-315.  doi: 10.1016/j.aim.2009.11.010.  Google Scholar

[6]

D. Baleanu and A. Fernandez, A generalisation of the Malgrange-Ehrenpreis theorem to find fundamental solutions to fractional PDEs, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 1-12.  doi: 10.14232/ejqtde.2017.1.15.  Google Scholar

[7]

A. BernardisF. J. Martín-ReyesP. R. Stinga and J. L. Torrea, Maximum principles, extension problem and inversion for nonlocal one-sided equations, J. Differential Equations, 260 (2016), 6333-6362.  doi: 10.1016/j.jde.2015.12.042.  Google Scholar

[8]

M. Š. Birman and M. Z. Solomjak, Spektralnaya Teoriya Samosopryazhennykh Operatorov v Gilbertovom Prostranstve, Leningrad. Univ., Leningrad, 1980. Google Scholar

[9]

C. Bucur and F. Ferrari, An extension problem for the fractional derivative defined by Marchaud, Fract. Calc. Appl. Anal., 19 (2016), 867-887.  doi: 10.1515/fca-2016-0047.  Google Scholar

[10]

X. Cabré and J. G. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093.  doi: 10.1016/j.aim.2010.01.025.  Google Scholar

[11]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Part. Diff. Eq., 32 2007, 1245–1260. doi: 10.1080/03605300600987306.  Google Scholar

[12]

A. CapellaJ. DávilaL. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations, 36 (2011), 1353-1384.  doi: 10.1080/03605302.2011.562954.  Google Scholar

[13]

M. D'Abbicco, M. R. Ebert and T. Picon, Global existence of small data solutions to the semilinear fractional wave equation, New Trends in Analysis and Interdisciplinary Applications, Trends Math. Res. Perspect., Birkhäuser/Springer, Cham, (2017), 465–471. doi: 10.1007/978-3-319-48812-7_59.  Google Scholar

[14]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[15]

A. de PabloF. QuirósA. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.  doi: 10.1002/cpa.21408.  Google Scholar

[16]

S. Dipierro and E. Valdinoci, A simple mathematical model inspired by the Purkinje cells: From delayed travelling waves to fractional diffusion, Bull. Math. Biol., 80 (2018), 1849-1870.  doi: 10.1007/s11538-018-0437-z.  Google Scholar

[17]

J.-D. Djida and A. Fernandez, Interior regularity estimates for a degenerate elliptic equation with mixed boundary conditions, Axioms, 7 (2018), 1-16.  doi: 10.3390/axioms7030065.  Google Scholar

[18]

S. D. Eidelman and A. N. Kochubei, Cauchy problem for fractional diffusion equations, J. Differential Equations, 199 (2004), 211-255.  doi: 10.1016/j.jde.2003.12.002.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[20]

P. FelmerA. Quaas and J. G. Tan, Positive solutions of nonlinear schrödinger equation with the fractional laplacian, P. Roy. Soc. Edinb. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[21]

A. Fernandez, An elliptic regularity theorem for fractional partial differential operators, Comp. Appl. Math., 37 (2018), 5542-5553.  doi: 10.1007/s40314-018-0618-2.  Google Scholar

[22]

Y. Fujita, Energy inequalities for integro-partial differential equations with Riemann-Liouville integrals, SIAM J. Math. Anal., 23 (1992), 1182-118.  doi: 10.1137/0523066.  Google Scholar

[23]

Y. V. Gorbatenko, Existence and uniqueness of mild solutions of second order semilinear differential equations in Banach space, Methods Funct. Anal. Topology, 17 (2011), 1-9.   Google Scholar

[24]

R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monographs in Mathematics. Springer, Heidelberg, 2014. doi: 10.1007/978-3-662-43930-2.  Google Scholar

[25]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[26]

H. Hirata and C. X. Miao, Space-time estimates of linear flow and application to some nonlinear integro-differential equations corresponding to fractional-order time derivative., Adv. Differential Equations, 7 (2002), 217-236.   Google Scholar

[27]

Y. H. Huang, Explicit Barenblatt profiles for fractional porous medium equations, Bulletin of the London Mathematical Society, 46 (2014), 857-869.  doi: 10.1112/blms/bdu045.  Google Scholar

[28]

J. KemppainenJ. Siljander and R. Zacher, Representation of solutions and large-time behaviour for fully nonlocal diffusion equations, J. Differential Equations, 263 (2017), 149-201.  doi: 10.1016/j.jde.2017.02.030.  Google Scholar

[29]

V. Keyantuo, C. Lizama and M. Warma, Existence, regularity and representation of solutions of time fractional wave equations, Electron. J. Differential Equations, 2017 (2017), 42 pp.  Google Scholar

[30]

Y. Kian and M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20 (2017), 117-138.  doi: 10.1515/fca-2017-0006.  Google Scholar

[31]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[32]

K.-H. Kim and S. Lim, Asymptotic behaviours of fundamental solution and its derivatives related to space-time fractional differential equations, J. Korean Math. Soc., 53 (2016), 929-967.  doi: 10.4134/JKMS.j150343.  Google Scholar

[33]

A. N. Kochubeǐ, Diffusion of fractional order, Differ. Equ., 26 (1990), 485-492.   Google Scholar

[34]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972.  Google Scholar

[35]

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. III, Die Grundlehren der mathematischen Wissenschaften, Band 183. Springer-Verlag, New York-Heidelberg, 1973.  Google Scholar

[36]

L. Maligranda, On interpolation of nonlinear operators, Comment. Math. Prace Mat., 28 (1989), 253-275.   Google Scholar

[37]

L. Maligranda, Marcinkiewicz interpolation theorem and marcinkiewicz spaces, Wiad. Mat., 48 (2012), 157-171.  doi: 10.14708/wm.v48i2.328.  Google Scholar

[38] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.   Google Scholar
[39]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.  doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[40]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[41]

A. Niang, Boundary regularity for a degenerate elliptic equation with mixed boundary conditions, Commun. Pure Appl. Anal., 18 (2019), 107-128.  doi: 10.3934/cpaa.2019007.  Google Scholar

[42]

R. H. NochettoE. Otárola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math., 15 (2015), 733-791.  doi: 10.1007/s10208-014-9208-x.  Google Scholar

[43]

E. Otárola and A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal., 21 (2018), 1262-1293.  doi: 10.1515/fca-2018-0067.  Google Scholar

[44]

A. Palmieri and M. Reissig, Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. II, Math. Nach., 291 (2018), 1859-1892.  doi: 10.1002/mana.201700144.  Google Scholar

[45]

K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[46]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[47]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[48]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Part. Diff. Eqs., 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar

[49]

L. Tartar, An introduction to Sobolev spaces and interpolation spaces., Lecture Notes of the Unione Matematica Italiana, volume 3, Springer, Berlin, 2007.  Google Scholar

[50]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics, 1736. Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0103908.  Google Scholar

[51]

E. Valdinoci, From the lung jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44.   Google Scholar

[52]

J. L. Vázquez and B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type, J. Math. Pures Appl., 101 (2014), 553-582.  doi: 10.1016/j.matpur.2013.07.001.  Google Scholar

[53] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.   Google Scholar
[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[6]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[7]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[10]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[11]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[12]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[13]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[16]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[17]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[18]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

2019 Impact Factor: 1.27

Article outline

[Back to Top]