-
Previous Article
Stability for one-dimensional discrete dynamical systems revisited
- DCDS-B Home
- This Issue
-
Next Article
Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities
Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions
Departamento de Estatística, Análise Matemática e Optimización, Instituto de Matemáticas, Universidade de Santiago de Compostela, 15782, Facultade de Matemáticas, Campus Vida, Santiago, Spain |
We present existence and multiplicity principles for second–order discontinuous problems with nonlinear functional conditions. They are based on the method of lower and upper solutions and a recent extension of the Leray–Schauder topological degree to a class of discontinuous operators.
References:
[1] |
H. Amann,
On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11 (1972), 346-384.
doi: 10.1016/0022-1236(72)90074-2. |
[2] |
A. Cabada and R. L. Pouso,
Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Analysis, 42 (2000), 1377-1396.
doi: 10.1016/S0362-546X(99)00158-3. |
[3] |
A. Cellina and A. Lasota,
A new approach to the definition of topological degree for multivalued mappings, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 47 (1969), 434-440.
|
[4] |
C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering, 205. Elsevier B. V., Amsterdam, 2006. |
[5] |
C. De Coster and S. Nicaise,
Lower and upper solutions for elliptic problems in nonsmooth domains, J. Differential Equations, 244 (2008), 599-629.
doi: 10.1016/j.jde.2007.08.008. |
[6] |
R. Figueroa, R. L. Pouso and J. Rodríguez-López, Degree theory for discontinuous operators, Fixed Point Theory, accepted. Google Scholar |
[7] |
R. Figueroa, R. L. Pouso and J. Rodríguez-López, Extremal solutions for second-order fully discontinuous problems with nonlinear functional boundary conditions, Electron. J. Qual. Theory Differ. Equ., (2018), 14 pp. |
[8] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[9] |
R. López Pouso, Schauder's fixed-point theorem: New applications and a new version for discontinuous operators, Bound. Value Probl., (2012), Art. ID 2012: 92, 14 pp.
doi: 10.1186/1687-2770-2012-92. |
[10] |
I. Rachůnková,
Upper and lower solutions and multiplicity results, J. Math. Anal. Appl., 246 (2000), 446-464.
doi: 10.1006/jmaa.2000.6798. |
[11] |
I. Rachůnková and M. Tvrdý,
Existence results for impulsive second order periodic problems, Nonlinear Anal., 59 (2004), 133-146.
doi: 10.1016/j.na.2004.07.006. |
[12] |
I. Rachůnková and M. Tvrdý,
Impulsive periodic boundary value problem and topological degree, Functional Differential Equations, Israel Seminar, 9 (2002), 471-498.
|
[13] |
I. Rachůnková and M. Tvrdý,
Non-ordered lower and upper functions in second order impulsive periodic problems, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 397-415.
|
[14] |
I. Rachůnková and M. Tvrdý,
Periodic problems with $\phi$-Laplacian involving non-ordered lower and upper functions, Fixed Point Theory, 6 (2005), 99-112.
|
[15] |
H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th Ed., Boston, Prentice Hall, 2010. Google Scholar |
[16] |
B. Rudolf,
An existence and multiplicity result for a periodic boundary value problem, Math. Bohem., 133 (2008), 41-61.
|
[17] |
J. R. L. Webb,
On degree theory for multivalued mappings and applications, Bolletino Un. Mat. Ital., 9 (1974), 137-158.
|
[18] |
X. Xian, D. O'Regan and R. P. Agarwal, Multiplicity results via topological degree for impulsive boundary value problems under non-well-ordered upper and lower solution conditions, Bound. Value Probl., (2008), Art. ID 197205, 21 pp.
doi: 10.1155/2008/197205. |
show all references
References:
[1] |
H. Amann,
On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11 (1972), 346-384.
doi: 10.1016/0022-1236(72)90074-2. |
[2] |
A. Cabada and R. L. Pouso,
Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Analysis, 42 (2000), 1377-1396.
doi: 10.1016/S0362-546X(99)00158-3. |
[3] |
A. Cellina and A. Lasota,
A new approach to the definition of topological degree for multivalued mappings, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 47 (1969), 434-440.
|
[4] |
C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering, 205. Elsevier B. V., Amsterdam, 2006. |
[5] |
C. De Coster and S. Nicaise,
Lower and upper solutions for elliptic problems in nonsmooth domains, J. Differential Equations, 244 (2008), 599-629.
doi: 10.1016/j.jde.2007.08.008. |
[6] |
R. Figueroa, R. L. Pouso and J. Rodríguez-López, Degree theory for discontinuous operators, Fixed Point Theory, accepted. Google Scholar |
[7] |
R. Figueroa, R. L. Pouso and J. Rodríguez-López, Extremal solutions for second-order fully discontinuous problems with nonlinear functional boundary conditions, Electron. J. Qual. Theory Differ. Equ., (2018), 14 pp. |
[8] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[9] |
R. López Pouso, Schauder's fixed-point theorem: New applications and a new version for discontinuous operators, Bound. Value Probl., (2012), Art. ID 2012: 92, 14 pp.
doi: 10.1186/1687-2770-2012-92. |
[10] |
I. Rachůnková,
Upper and lower solutions and multiplicity results, J. Math. Anal. Appl., 246 (2000), 446-464.
doi: 10.1006/jmaa.2000.6798. |
[11] |
I. Rachůnková and M. Tvrdý,
Existence results for impulsive second order periodic problems, Nonlinear Anal., 59 (2004), 133-146.
doi: 10.1016/j.na.2004.07.006. |
[12] |
I. Rachůnková and M. Tvrdý,
Impulsive periodic boundary value problem and topological degree, Functional Differential Equations, Israel Seminar, 9 (2002), 471-498.
|
[13] |
I. Rachůnková and M. Tvrdý,
Non-ordered lower and upper functions in second order impulsive periodic problems, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 397-415.
|
[14] |
I. Rachůnková and M. Tvrdý,
Periodic problems with $\phi$-Laplacian involving non-ordered lower and upper functions, Fixed Point Theory, 6 (2005), 99-112.
|
[15] |
H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th Ed., Boston, Prentice Hall, 2010. Google Scholar |
[16] |
B. Rudolf,
An existence and multiplicity result for a periodic boundary value problem, Math. Bohem., 133 (2008), 41-61.
|
[17] |
J. R. L. Webb,
On degree theory for multivalued mappings and applications, Bolletino Un. Mat. Ital., 9 (1974), 137-158.
|
[18] |
X. Xian, D. O'Regan and R. P. Agarwal, Multiplicity results via topological degree for impulsive boundary value problems under non-well-ordered upper and lower solution conditions, Bound. Value Probl., (2008), Art. ID 197205, 21 pp.
doi: 10.1155/2008/197205. |
[1] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[2] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[3] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[4] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[5] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[6] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[7] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[8] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[9] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[10] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[11] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[12] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[13] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[14] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[15] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[16] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[17] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[18] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[19] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[20] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]