• Previous Article
    Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions
February  2020, 25(2): 635-650. doi: 10.3934/dcdsb.2019258

Stability for one-dimensional discrete dynamical systems revisited

1. 

Departamento de Matemática Aplicada, ETSI Industriales, Universidad Nacional de Educación a Distancia (UNED), c/ Juan del Rosal 12, 28040, Madrid, Spain

2. 

Departament d'Economia i Empresa, Universitat Pompeu Fabra, c/ Ramón Trías Fargas 25-27, 08005, Barcelona, Spain

* Corresponding author: Juan Perán

Dedicated to Prof. Juan J. Nieto on the occasion of his 60th birthday

Received  January 2019 Revised  May 2019 Published  February 2020 Early access  November 2019

Fund Project: This work was funded by grant MTM2017-85054-C2-2-P (AEI/FEDER, UE) and ETSII-UNED grant 2019-MAT11.

We present a new method to study the stability of one-dimensional discrete-time models, which is based on studying the graph of a certain family of functions. The method is closely related to exponent analysis, which the authors introduced to study the global stability of certain intricate convex combinations of maps. We show that the new strategy presented here complements and extends some existing conditions for the global stability. In particular, we provide a global stability condition improving the condition of negative Schwarzian derivative. Besides, we study the relation between this new method and the enveloping technique.

Citation: Daniel Franco, Juan Perán, Juan Segura. Stability for one-dimensional discrete dynamical systems revisited. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 635-650. doi: 10.3934/dcdsb.2019258
References:
[1]

D. J. Allwright, Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.  doi: 10.1137/0134057.

[2]

F. A. BarthaÁ. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.  doi: 10.1080/10236198.2013.804916.

[3]

S. Buedo-Fernández and E. Liz, On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.  doi: 10.14232/ejqtde.2018.1.43.

[4]

B. CidF. M. Hilker and E. Liz, Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.  doi: 10.1016/j.mbs.2013.12.003.

[5]

P. Cull, Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.  doi: 10.1007/BF02459978.

[6]

P. Cull, Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.  doi: 10.1007/s11538-006-9129-1.

[7]

P. Cull and J. Chaffee, Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.  doi: 10.1063/1.1291265.

[8]

M. E. FisherB. S. Goh and T. L. Vincent, Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.  doi: 10.1007/BF02462383.

[9]

D. FrancoH. Logemann and J. Perán, Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.  doi: 10.1016/j.sysconle.2013.11.012.

[10]

D. FrancoJ. Perán and J. Segura, Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.  doi: 10.1016/j.mbs.2018.10.002.

[11]

D. FrancoJ. Perán and J. Segura, Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.  doi: 10.14232/ejqtde.2018.1.101.

[12]

B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012.

[13]

I. Györi and S. I. Trofimchuk, Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.  doi: 10.1080/10236190008808250.

[14]

V. Jiménez López and E. Parreño, L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.  doi: 10.1007/s10884-016-9525-7.

[15]

S. A. Kuruklis and G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.  doi: 10.1090/qam/1162273.

[16]

S. A. Levin and R. M. May, A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.  doi: 10.1016/0040-5809(76)90043-5.

[17]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.

[18]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12. doi: 10.1007/s12346-018-00314-4.

[19]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. 

[20]

C. J. PennycuickR. M. Compton and L. Beckingham, A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.  doi: 10.1016/0022-5193(68)90081-7.

[21]

J. Perán and D. Franco, Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.  doi: 10.1016/j.aml.2015.02.022.

[22]

H. Seno, A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.  doi: 10.1016/j.mbs.2008.06.004.

[23]

A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.  doi: 10.1142/S0218127495000934.

[24]

D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.

[25]

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

show all references

References:
[1]

D. J. Allwright, Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.  doi: 10.1137/0134057.

[2]

F. A. BarthaÁ. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.  doi: 10.1080/10236198.2013.804916.

[3]

S. Buedo-Fernández and E. Liz, On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.  doi: 10.14232/ejqtde.2018.1.43.

[4]

B. CidF. M. Hilker and E. Liz, Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.  doi: 10.1016/j.mbs.2013.12.003.

[5]

P. Cull, Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.  doi: 10.1007/BF02459978.

[6]

P. Cull, Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.  doi: 10.1007/s11538-006-9129-1.

[7]

P. Cull and J. Chaffee, Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.  doi: 10.1063/1.1291265.

[8]

M. E. FisherB. S. Goh and T. L. Vincent, Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.  doi: 10.1007/BF02462383.

[9]

D. FrancoH. Logemann and J. Perán, Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.  doi: 10.1016/j.sysconle.2013.11.012.

[10]

D. FrancoJ. Perán and J. Segura, Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.  doi: 10.1016/j.mbs.2018.10.002.

[11]

D. FrancoJ. Perán and J. Segura, Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.  doi: 10.14232/ejqtde.2018.1.101.

[12]

B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012.

[13]

I. Györi and S. I. Trofimchuk, Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.  doi: 10.1080/10236190008808250.

[14]

V. Jiménez López and E. Parreño, L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.  doi: 10.1007/s10884-016-9525-7.

[15]

S. A. Kuruklis and G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.  doi: 10.1090/qam/1162273.

[16]

S. A. Levin and R. M. May, A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.  doi: 10.1016/0040-5809(76)90043-5.

[17]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.

[18]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12. doi: 10.1007/s12346-018-00314-4.

[19]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. 

[20]

C. J. PennycuickR. M. Compton and L. Beckingham, A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.  doi: 10.1016/0022-5193(68)90081-7.

[21]

J. Perán and D. Franco, Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.  doi: 10.1016/j.aml.2015.02.022.

[22]

H. Seno, A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.  doi: 10.1016/j.mbs.2008.06.004.

[23]

A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.  doi: 10.1142/S0218127495000934.

[24]

D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.

[25]

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.

[1]

Zhanyuan Hou. Geometric method for global stability of discrete population models. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3305-3334. doi: 10.3934/dcdsb.2020063

[2]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[3]

Benjamin Webb. Dynamics of functions with an eventual negative Schwarzian derivative. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1393-1408. doi: 10.3934/dcds.2009.24.1393

[4]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[5]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[6]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[7]

Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051

[8]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[9]

B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537

[10]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[11]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[12]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[13]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[14]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[15]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[16]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[17]

Christopher E. Elmer. The stability of stationary fronts for a discrete nerve axon model. Mathematical Biosciences & Engineering, 2007, 4 (1) : 113-129. doi: 10.3934/mbe.2007.4.113

[18]

Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020

[19]

Hui Li, Manjun Ma. Corrigendum on “H. Li and M. Ma, global dynamics of a virus infection model with repulsive effect, Discrete and Continuous Dynamical Systems, Series B, 24(9) 4783-4797, 2019”. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4925-4925. doi: 10.3934/dcdsb.2020299

[20]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (373)
  • HTML views (197)
  • Cited by (3)

Other articles
by authors

[Back to Top]