-
Previous Article
Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
- DCDS-B Home
- This Issue
-
Next Article
Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions
Stability for one-dimensional discrete dynamical systems revisited
1. | Departamento de Matemática Aplicada, ETSI Industriales, Universidad Nacional de Educación a Distancia (UNED), c/ Juan del Rosal 12, 28040, Madrid, Spain |
2. | Departament d'Economia i Empresa, Universitat Pompeu Fabra, c/ Ramón Trías Fargas 25-27, 08005, Barcelona, Spain |
We present a new method to study the stability of one-dimensional discrete-time models, which is based on studying the graph of a certain family of functions. The method is closely related to exponent analysis, which the authors introduced to study the global stability of certain intricate convex combinations of maps. We show that the new strategy presented here complements and extends some existing conditions for the global stability. In particular, we provide a global stability condition improving the condition of negative Schwarzian derivative. Besides, we study the relation between this new method and the enveloping technique.
References:
[1] |
D. J. Allwright,
Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.
doi: 10.1137/0134057. |
[2] |
F. A. Bartha, Á. Garab and T. Krisztin,
Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.
doi: 10.1080/10236198.2013.804916. |
[3] |
S. Buedo-Fernández and E. Liz,
On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.
doi: 10.14232/ejqtde.2018.1.43. |
[4] |
B. Cid, F. M. Hilker and E. Liz,
Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.
doi: 10.1016/j.mbs.2013.12.003. |
[5] |
P. Cull,
Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.
doi: 10.1007/BF02459978. |
[6] |
P. Cull,
Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.
doi: 10.1007/s11538-006-9129-1. |
[7] |
P. Cull and J. Chaffee,
Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.
doi: 10.1063/1.1291265. |
[8] |
M. E. Fisher, B. S. Goh and T. L. Vincent,
Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.
doi: 10.1007/BF02462383. |
[9] |
D. Franco, H. Logemann and J. Perán,
Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.
doi: 10.1016/j.sysconle.2013.11.012. |
[10] |
D. Franco, J. Perán and J. Segura,
Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.
doi: 10.1016/j.mbs.2018.10.002. |
[11] |
D. Franco, J. Perán and J. Segura,
Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.
doi: 10.14232/ejqtde.2018.1.101. |
[12] |
B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012. Google Scholar |
[13] |
I. Györi and S. I. Trofimchuk,
Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.
doi: 10.1080/10236190008808250. |
[14] |
V. Jiménez López and E. Parreño,
L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.
doi: 10.1007/s10884-016-9525-7. |
[15] |
S. A. Kuruklis and G. Ladas,
Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.
doi: 10.1090/qam/1162273. |
[16] |
S. A. Levin and R. M. May,
A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.
doi: 10.1016/0040-5809(76)90043-5. |
[17] |
E. Liz,
Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.
doi: 10.3934/dcdsb.2007.7.191. |
[18] |
E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12.
doi: 10.1007/s12346-018-00314-4. |
[19] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. Google Scholar |
[20] |
C. J. Pennycuick, R. M. Compton and L. Beckingham,
A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.
doi: 10.1016/0022-5193(68)90081-7. |
[21] |
J. Perán and D. Franco,
Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.
doi: 10.1016/j.aml.2015.02.022. |
[22] |
H. Seno,
A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.
doi: 10.1016/j.mbs.2008.06.004. |
[23] |
A. N. Sharkovskiĭ,
Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.
doi: 10.1142/S0218127495000934. |
[24] |
D. Singer,
Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[25] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
show all references
References:
[1] |
D. J. Allwright,
Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.
doi: 10.1137/0134057. |
[2] |
F. A. Bartha, Á. Garab and T. Krisztin,
Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.
doi: 10.1080/10236198.2013.804916. |
[3] |
S. Buedo-Fernández and E. Liz,
On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.
doi: 10.14232/ejqtde.2018.1.43. |
[4] |
B. Cid, F. M. Hilker and E. Liz,
Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.
doi: 10.1016/j.mbs.2013.12.003. |
[5] |
P. Cull,
Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.
doi: 10.1007/BF02459978. |
[6] |
P. Cull,
Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.
doi: 10.1007/s11538-006-9129-1. |
[7] |
P. Cull and J. Chaffee,
Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.
doi: 10.1063/1.1291265. |
[8] |
M. E. Fisher, B. S. Goh and T. L. Vincent,
Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.
doi: 10.1007/BF02462383. |
[9] |
D. Franco, H. Logemann and J. Perán,
Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.
doi: 10.1016/j.sysconle.2013.11.012. |
[10] |
D. Franco, J. Perán and J. Segura,
Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.
doi: 10.1016/j.mbs.2018.10.002. |
[11] |
D. Franco, J. Perán and J. Segura,
Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.
doi: 10.14232/ejqtde.2018.1.101. |
[12] |
B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012. Google Scholar |
[13] |
I. Györi and S. I. Trofimchuk,
Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.
doi: 10.1080/10236190008808250. |
[14] |
V. Jiménez López and E. Parreño,
L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.
doi: 10.1007/s10884-016-9525-7. |
[15] |
S. A. Kuruklis and G. Ladas,
Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.
doi: 10.1090/qam/1162273. |
[16] |
S. A. Levin and R. M. May,
A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.
doi: 10.1016/0040-5809(76)90043-5. |
[17] |
E. Liz,
Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.
doi: 10.3934/dcdsb.2007.7.191. |
[18] |
E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12.
doi: 10.1007/s12346-018-00314-4. |
[19] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. Google Scholar |
[20] |
C. J. Pennycuick, R. M. Compton and L. Beckingham,
A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.
doi: 10.1016/0022-5193(68)90081-7. |
[21] |
J. Perán and D. Franco,
Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.
doi: 10.1016/j.aml.2015.02.022. |
[22] |
H. Seno,
A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.
doi: 10.1016/j.mbs.2008.06.004. |
[23] |
A. N. Sharkovskiĭ,
Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.
doi: 10.1142/S0218127495000934. |
[24] |
D. Singer,
Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[25] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
[1] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[2] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[3] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[4] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[5] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[6] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[7] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[8] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[9] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[10] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[11] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[12] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[13] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[14] |
Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264 |
[15] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[16] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[17] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[18] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[19] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[20] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]