
-
Previous Article
Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials
- DCDS-B Home
- This Issue
-
Next Article
Stability for one-dimensional discrete dynamical systems revisited
Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, Facultat de Ciències, 08193 Bellaterra (Barcelona), Spain |
2. | Departament de Matemàtiques, Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Spain |
We present a systematic methodology to determine and locate analytically isolated periodic points of discrete and continuous dynamical systems with algebraic nature. We apply this method to a wide range of examples, including a one-parameter family of counterexamples to the discrete Markus-Yamabe conjecture (La Salle conjecture); the study of the low periods of a Lotka-Volterra-type map; the existence of three limit cycles for a piecewise linear planar vector field; a new counterexample of Kouchnirenko conjecture; and an alternative proof of the existence of a class of symmetric central configuration of the $ (1+4) $-body problem.
References:
[1] |
Y. Avishai and D. Berend,
Transmission through a Thue-Morse chain, Phys. Rev. B., 45 (1992), 2717-2724.
doi: 10.1103/PhysRevB.45.2717. |
[2] |
F. Balibrea, J. L. García Guirao, M. Lampart and J. Llibre,
Dynamics of a Lotka-Volterra map, Fundamenta Mathematicae, 191 (2006), 265-279.
doi: 10.4064/fm191-3-5. |
[3] |
J. Bernat and J. Llibre,
Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 337-379.
|
[4] |
J. Casasayas, J. Llibre and A. Nunes,
Central configurations of the planar 1+n-body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288.
doi: 10.1007/BF00693325. |
[5] |
A. Cima, A. Gasull and F. Mañosas,
The discrete Markus-Yamabe problem, Nonlinear Anal. TMA, 35 (1999), 343-354.
doi: 10.1016/S0362-546X(97)00715-3. |
[6] |
A. Cima, A. Gasull and F. Mañosas,
On the global asymptotic stability of difference equations satisfying a Markus-Yamabe condition, Publ. Mat., 58 (2014), 167-178.
doi: 10.5565/PUBLMAT_Extra14_09. |
[7] |
A. Cima, A. van den Essen, A. Gasull, E. Hubbers and F. Mañosas,
A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131 (1997), 453-457.
doi: 10.1006/aima.1997.1673. |
[8] |
J. M. Cors, J. Llibre and M. Ollé,
Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342.
doi: 10.1023/B:CELE.0000043569.25307.ab. |
[9] |
A. Dickenstein, J. M. Rojas, K. Rusek and J. Shih,
Extremal Real Algebraic Geometry and $\mathcal{A}$-Discriminants, Moscow Math. Journal, 7 (2007), 425-452,574.
doi: 10.17323/1609-4514-2007-7-3-425-452. |
[10] |
G. H. Erjaee and F. M. Dannan,
Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system, Int. J. Bifurcation and Chaos, 14 (2004), 4301-4308.
doi: 10.1142/S0218127404011946. |
[11] |
E. Freire, E. Ponce and F. Torres,
The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat., 58 (2014), 221-253.
doi: 10.5565/PUBLMAT_Extra14_13. |
[12] |
J. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation diagram and stability for a one-parameter family of planar vector fields, J. Math. Anal. Appl., 413 (2014), 321-342.
doi: 10.1016/j.jmaa.2013.11.047. |
[13] |
J. D. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation values for a familiy of planar vector fields of degree five, Discrete Contin. Dyn. Syst. A, 35 (2015), 669-701.
doi: 10.3934/dcds.2015.35.669. |
[14] |
A. Gasull, M. Llorens and V. Mañosa,
Periodic points of a Landen transformation, Commun. Nonlinear Sci. Numer. Simulat., 64 (2018), 232-245.
doi: 10.1016/j.cnsns.2018.04.020. |
[15] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[16] |
C. Gutiérrez,
A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 627-671.
doi: 10.1016/S0294-1449(16)30147-0. |
[17] |
B. Haas,
A simple counterexample to Kouchnirenko's conjecture, Beiträge zur Algebra und Geometrie, 43 (2002), 1-8.
|
[18] |
S.-M. Huan and X.-S. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst. A, 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[19] |
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, Inc., New York, 1994. |
[20] |
A. G. Khovanskiǐ,
On a class of systems of transcendental equations, Doklady Akad. Nauk. SSSR, 255 (1980), 804-807.
|
[21] |
W. Kulpa,
The Poincaré-Miranda theorem, Amer. Math. Month., 104 (1997), 545-550.
doi: 10.2307/2975081. |
[22] |
J. P. La Salle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. |
[23] |
T.-Y. Li, J. M. Rojas and X. S. Wang,
Counting real connected components of trinomial curve intersections and m-nomial hypersurfaces, Discrete Comput. Geom., 30 (2003), 379-414.
doi: 10.1007/s00454-003-2834-8. |
[24] |
J. Llibre,
On the central configurations of the n-body problem, Appl. Math. Nonlinear Sci., 2 (2017), 509-518.
doi: 10.21042/AMNS.2017.2.00042. |
[25] |
J. Llibre and E. Ponce,
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.
|
[26] |
P. Maličký,
Interior periodic points of a Lotka-Volterra map, J. Difference Eq. Appl., 18 (2012), 553-567.
doi: 10.1080/10236198.2011.583241. |
[27] |
L. Markus and H. Yamabe,
Global stability criteria for differential systems, Osaka Math. Journal, 12 (1960), 305-317.
|
[28] |
C. Miranda,
Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.
|
[29] |
H. Poincaré,
Sur certaines solutions particulieres du probléme des trois corps, Bull. Astronomique, 1 (1884), 63-74.
|
[30] |
H. Poincaré,
Sur les courbes définies par une équation différentielle Ⅳ, J. Math. Pures Appl., 85 (1886), 151-217.
|
[31] |
A. N. Sharkovskiǐ, Low dimensional dynamics, Tagungsbericht 20/1993, Proceedings of Mathematisches Forschungsinstitut Oberwolfach, (1993), 17. |
[32] |
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third edition, Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002.
doi: 10.1007/978-0-387-21738-3. |
[33] |
M. N. Vrahatis,
A short proof and a Generalization of Miranda's existence Theorem, Proc. Amer. Math. Soc., 107 (1989), 701-703.
doi: 10.2307/2048168. |
show all references
References:
[1] |
Y. Avishai and D. Berend,
Transmission through a Thue-Morse chain, Phys. Rev. B., 45 (1992), 2717-2724.
doi: 10.1103/PhysRevB.45.2717. |
[2] |
F. Balibrea, J. L. García Guirao, M. Lampart and J. Llibre,
Dynamics of a Lotka-Volterra map, Fundamenta Mathematicae, 191 (2006), 265-279.
doi: 10.4064/fm191-3-5. |
[3] |
J. Bernat and J. Llibre,
Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 337-379.
|
[4] |
J. Casasayas, J. Llibre and A. Nunes,
Central configurations of the planar 1+n-body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288.
doi: 10.1007/BF00693325. |
[5] |
A. Cima, A. Gasull and F. Mañosas,
The discrete Markus-Yamabe problem, Nonlinear Anal. TMA, 35 (1999), 343-354.
doi: 10.1016/S0362-546X(97)00715-3. |
[6] |
A. Cima, A. Gasull and F. Mañosas,
On the global asymptotic stability of difference equations satisfying a Markus-Yamabe condition, Publ. Mat., 58 (2014), 167-178.
doi: 10.5565/PUBLMAT_Extra14_09. |
[7] |
A. Cima, A. van den Essen, A. Gasull, E. Hubbers and F. Mañosas,
A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131 (1997), 453-457.
doi: 10.1006/aima.1997.1673. |
[8] |
J. M. Cors, J. Llibre and M. Ollé,
Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342.
doi: 10.1023/B:CELE.0000043569.25307.ab. |
[9] |
A. Dickenstein, J. M. Rojas, K. Rusek and J. Shih,
Extremal Real Algebraic Geometry and $\mathcal{A}$-Discriminants, Moscow Math. Journal, 7 (2007), 425-452,574.
doi: 10.17323/1609-4514-2007-7-3-425-452. |
[10] |
G. H. Erjaee and F. M. Dannan,
Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system, Int. J. Bifurcation and Chaos, 14 (2004), 4301-4308.
doi: 10.1142/S0218127404011946. |
[11] |
E. Freire, E. Ponce and F. Torres,
The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat., 58 (2014), 221-253.
doi: 10.5565/PUBLMAT_Extra14_13. |
[12] |
J. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation diagram and stability for a one-parameter family of planar vector fields, J. Math. Anal. Appl., 413 (2014), 321-342.
doi: 10.1016/j.jmaa.2013.11.047. |
[13] |
J. D. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation values for a familiy of planar vector fields of degree five, Discrete Contin. Dyn. Syst. A, 35 (2015), 669-701.
doi: 10.3934/dcds.2015.35.669. |
[14] |
A. Gasull, M. Llorens and V. Mañosa,
Periodic points of a Landen transformation, Commun. Nonlinear Sci. Numer. Simulat., 64 (2018), 232-245.
doi: 10.1016/j.cnsns.2018.04.020. |
[15] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[16] |
C. Gutiérrez,
A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 627-671.
doi: 10.1016/S0294-1449(16)30147-0. |
[17] |
B. Haas,
A simple counterexample to Kouchnirenko's conjecture, Beiträge zur Algebra und Geometrie, 43 (2002), 1-8.
|
[18] |
S.-M. Huan and X.-S. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst. A, 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[19] |
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, Inc., New York, 1994. |
[20] |
A. G. Khovanskiǐ,
On a class of systems of transcendental equations, Doklady Akad. Nauk. SSSR, 255 (1980), 804-807.
|
[21] |
W. Kulpa,
The Poincaré-Miranda theorem, Amer. Math. Month., 104 (1997), 545-550.
doi: 10.2307/2975081. |
[22] |
J. P. La Salle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. |
[23] |
T.-Y. Li, J. M. Rojas and X. S. Wang,
Counting real connected components of trinomial curve intersections and m-nomial hypersurfaces, Discrete Comput. Geom., 30 (2003), 379-414.
doi: 10.1007/s00454-003-2834-8. |
[24] |
J. Llibre,
On the central configurations of the n-body problem, Appl. Math. Nonlinear Sci., 2 (2017), 509-518.
doi: 10.21042/AMNS.2017.2.00042. |
[25] |
J. Llibre and E. Ponce,
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.
|
[26] |
P. Maličký,
Interior periodic points of a Lotka-Volterra map, J. Difference Eq. Appl., 18 (2012), 553-567.
doi: 10.1080/10236198.2011.583241. |
[27] |
L. Markus and H. Yamabe,
Global stability criteria for differential systems, Osaka Math. Journal, 12 (1960), 305-317.
|
[28] |
C. Miranda,
Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.
|
[29] |
H. Poincaré,
Sur certaines solutions particulieres du probléme des trois corps, Bull. Astronomique, 1 (1884), 63-74.
|
[30] |
H. Poincaré,
Sur les courbes définies par une équation différentielle Ⅳ, J. Math. Pures Appl., 85 (1886), 151-217.
|
[31] |
A. N. Sharkovskiǐ, Low dimensional dynamics, Tagungsbericht 20/1993, Proceedings of Mathematisches Forschungsinstitut Oberwolfach, (1993), 17. |
[32] |
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third edition, Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002.
doi: 10.1007/978-0-387-21738-3. |
[33] |
M. N. Vrahatis,
A short proof and a Generalization of Miranda's existence Theorem, Proc. Amer. Math. Soc., 107 (1989), 701-703.
doi: 10.2307/2048168. |







[1] |
Mats Gyllenberg, Ping Yan. On the number of limit cycles for three dimensional Lotka-Volterra systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 347-352. doi: 10.3934/dcdsb.2009.11.347 |
[2] |
Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 |
[3] |
Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147 |
[4] |
Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111 |
[5] |
Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103 |
[6] |
Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533 |
[7] |
Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747 |
[8] |
Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1835-1858. doi: 10.3934/dcdsb.2020005 |
[9] |
Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823 |
[10] |
Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537 |
[11] |
Chiun-Chuan Chen, Yin-Liang Huang, Li-Chang Hung, Chang-Hong Wu. Semi-exact solutions and pulsating fronts for Lotka-Volterra systems of two competing species in spatially periodic habitats. Communications on Pure and Applied Analysis, 2020, 19 (1) : 1-18. doi: 10.3934/cpaa.2020001 |
[12] |
Norimichi Hirano, Wieslaw Krawcewicz, Haibo Ruan. Existence of nonstationary periodic solutions for $\Gamma$-symmetric Lotka-Volterra type systems. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 709-735. doi: 10.3934/dcds.2011.30.709 |
[13] |
Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59 |
[14] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[15] |
Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 |
[16] |
Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559 |
[17] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[18] |
Allyson Oliveira, Hildeberto Cabral. On stacked central configurations of the planar coorbital satellites problem. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3715-3732. doi: 10.3934/dcds.2012.32.3715 |
[19] |
Jaume Llibre. Limit cycles of continuous piecewise differential systems separated by a parabola and formed by a linear center and a quadratic center. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022034 |
[20] |
Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]