We establish the boundedness of some Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials belonging to the reverse Hölder class.
Citation: |
[1] |
A. Akbulut, V. S. Guliyev and M. N. Omarova, Marcinkiewicz integrals associated with Schrödinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl., (2017), Paper No. 121, 16 pp.
doi: 10.1186/s13661-017-0851-4.![]() ![]() ![]() |
[2] |
J. Alvarez, J. Lakey and M. Guzman-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51 (2000), 1-47.
![]() ![]() |
[3] |
A. S. Berdyshev, B. J. Kadirkulov and J. J. Nieto, Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives, Complex Var. Elliptic Equ., 59 (2014), 680-692.
doi: 10.1080/17476933.2013.777711.![]() ![]() ![]() |
[4] |
B. Bongioanni, E. Harboure and O. Salinas, Commutators of Riesz transforms related to Schödinger operators, J. Fourier Anal. Appl., 17 (2011), 115-134.
doi: 10.1007/s00041-010-9133-6.![]() ![]() ![]() |
[5] |
T. Bui, Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270-292.
doi: 10.1016/j.bulsci.2013.06.007.![]() ![]() ![]() |
[6] |
D. Chen and L. Song, The boundedness of the commutator for Riesz potential associated with Schrödinger operator on Morrey spaces, Anal. Theory Appl., 30 (2014), 363-368.
doi: 10.4208/ata.2014.v30.n4.3.![]() ![]() ![]() |
[7] |
F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273-279.
![]() ![]() |
[8] |
D. Cruz-Uribe and A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutators of fractional integrals, Publ. Mat., 47 (2003), 103-131.
doi: 10.5565/PUBLMAT_47103_05.![]() ![]() ![]() |
[9] |
G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.
doi: 10.1006/jfan.1993.1032.![]() ![]() ![]() |
[10] |
Y. Ding, S. Z. Lu and P. Zhang, Weak estimates for commutators of fractional integral operators, Sci. China Ser. A, 44 (2001), 877-887.
doi: 10.1007/BF02880137.![]() ![]() ![]() |
[11] |
D. Fan, S. Lu and D. Yang, Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 14 (1998), 625-634.
![]() ![]() |
[12] |
V. S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in $\mathbb{R}^n$, Doctoral dissertation, Mat. Inst. Steklov, Moscow, 1994.
![]() |
[13] |
V. S. Guliyev, Function Spaces, Integral Operators and two Weighted Inequalities on Homogeneous Groups. Some Applications, Baku, Elm, 1999.
![]() |
[14] |
V. S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., (2009), Art. ID 503948, 20 pp.
![]() ![]() |
[15] |
V. S. Guliyev, Local generalized Morrey spaces and singular integrals with rough kernel, Azerb. J. Math., 3 (2013), 79-94.
![]() ![]() |
[16] |
V. S. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.), 193 (2013), 211-227.
doi: 10.1007/s10958-013-1448-9.![]() ![]() ![]() |
[17] |
V. S. Guliyev, Function spaces and integral operators associated with Schrödinger operators: An overview, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40 (2014), 178-202.
![]() ![]() |
[18] |
V. S. Guliyev, M. N. Omarova, M. A. Ragusa and A. Scapellato, Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., 457 (2018), 1388-1402.
doi: 10.1016/j.jmaa.2016.09.070.![]() ![]() ![]() |
[19] |
V. S. Guliyev and L. Softova, Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal., 38 (2013), 843-862.
doi: 10.1007/s11118-012-9299-4.![]() ![]() ![]() |
[20] |
V. S. Guliyev and L. Softova, Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations, 259 (2015), 2368-2387.
doi: 10.1016/j.jde.2015.03.032.![]() ![]() ![]() |
[21] |
T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (Sendai, 1990), ICM 90 Satellite Proceedings, Springer-Verlag, Tokyo, 1991,183–189.
![]() ![]() |
[22] |
C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
doi: 10.1090/S0002-9947-1938-1501936-8.![]() ![]() ![]() |
[23] |
E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95-103.
doi: 10.1002/mana.19941660108.![]() ![]() ![]() |
[24] |
J. J. Nieto and C. C. Tisdell, Existence and uniqueness of solutions to first-order systems of nonlinear impulsive boundary-value problems with sub-, super-linear or linear growth, Electron. J. Differential Equations, 2007 (2007), 1-14.
![]() ![]() |
[25] |
M. Otelbaev, Imbedding theorems for spaces with weight and their use in investigating the spectrum of the Schrödinger operator, Trudy Mat. Inst. Steklov., 150 (1979), 265-305.
![]() ![]() |
[26] |
M. Otelbaev, Spectrum Estimates of the Sturm-Liouville Operator, Alma Ata, Gylym, 1990.
![]() |
[27] |
C. Perez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163-185.
doi: 10.1006/jfan.1995.1027.![]() ![]() ![]() |
[28] |
S. Polidoro and M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341-350.
doi: 10.1023/A:1011261019736.![]() ![]() ![]() |
[29] |
M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385-397.
doi: 10.1215/S0012-7094-02-11327-1.![]() ![]() ![]() |
[30] |
M. A. Ragusa and A. Tachikawa, On continuity of minimizers for certain quadratic growth functionals, J. Math. Soc. Japan, 57 (2005), 691-700.
doi: 10.2969/jmsj/1158241929.![]() ![]() ![]() |
[31] |
Z. Shen, $L_p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513-546.
doi: 10.5802/aif.1463.![]() ![]() ![]() |
[32] |
L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.), 22 (2006), 757-766.
doi: 10.1007/s10114-005-0628-z.![]() ![]() ![]() |
[33] |
E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.
![]() ![]() |
[34] |
L. Tang and J. Dong, Boundedness for some Schrödinger type operator on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101-109.
doi: 10.1016/j.jmaa.2009.01.043.![]() ![]() ![]() |
[35] |
R. Wheeden and A. Zygmund, Measure and Integral, An Introduction to Real Analysis, Pure and Applied Mathematics, 43, Marcel Dekker, Inc., New York-Basel, 1977.
![]() ![]() |
[36] |
H. K. Xu and J. J. Nieto, Extremal solutions of a class of nonlinear integro-differential equations in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 2605-2614.
doi: 10.1090/S0002-9939-97-04149-X.![]() ![]() ![]() |
[37] |
J. Zhong, Harmonic Analysis for some Schrödinger Type Operators, Ph.D. thesis, Princeton University, 1993.
![]() ![]() |