• Previous Article
    Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence
  • DCDS-B Home
  • This Issue
  • Next Article
    Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
February  2020, 25(2): 671-690. doi: 10.3934/dcdsb.2019260

Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials

1. 

S.M. Nikolskii Institute of Mathematics at RUDN University, 117198 Moscow, Russia

2. 

Department of Mathematics, Dumlupinar University, 43100 Kutahya, Turkey

3. 

Institute of Mathematics and Mechanics of NAS of Azerbaijan, AZ1141 Baku, Azerbaijan

4. 

Baku State University, AZ1141 Baku, Azerbaijan

5. 

Dipartimento di Matematica e Informatica, Universita di Catania, Catania, Italy

* Corresponding author: maragusa@dmi.unict.it (Maria Alessandra Ragusa)

In honor of the 60-th birthday of Juan J. Nieto
The research of V.S. Guliyev and M. Omarova was partially supported by the grant of 1st Azerbaijan Russia Joint Grant Competition (Grant No. EIF-BGM-4-RFTF-1/2017-21/01/1).
The research of V.S. Guliyev and M.A. Ragusa are partially supported by the Ministry of Education and Science of the Russian Federation (Agreement number N. 02.03.21.0008)

Received  February 2018 Revised  October 2018 Published  February 2020 Early access  November 2019

Fund Project: The research of V.S. Guliyev and M.A. Ragusa are partially supported by the Ministry of Education and Science of the Russian Federation (Agreement number N. 02.03.21.0008).

We establish the boundedness of some Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials belonging to the reverse Hölder class.

Citation: Vagif S. Guliyev, Ramin V. Guliyev, Mehriban N. Omarova, Maria Alessandra Ragusa. Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 671-690. doi: 10.3934/dcdsb.2019260
References:
[1]

A. Akbulut, V. S. Guliyev and M. N. Omarova, Marcinkiewicz integrals associated with Schrödinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl., (2017), Paper No. 121, 16 pp. doi: 10.1186/s13661-017-0851-4.

[2]

J. AlvarezJ. Lakey and M. Guzman-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51 (2000), 1-47. 

[3]

A. S. BerdyshevB. J. Kadirkulov and J. J. Nieto, Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives, Complex Var. Elliptic Equ., 59 (2014), 680-692.  doi: 10.1080/17476933.2013.777711.

[4]

B. BongioanniE. Harboure and O. Salinas, Commutators of Riesz transforms related to Schödinger operators, J. Fourier Anal. Appl., 17 (2011), 115-134.  doi: 10.1007/s00041-010-9133-6.

[5]

T. Bui, Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270-292.  doi: 10.1016/j.bulsci.2013.06.007.

[6]

D. Chen and L. Song, The boundedness of the commutator for Riesz potential associated with Schrödinger operator on Morrey spaces, Anal. Theory Appl., 30 (2014), 363-368.  doi: 10.4208/ata.2014.v30.n4.3.

[7]

F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273-279. 

[8]

D. Cruz-Uribe and A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutators of fractional integrals, Publ. Mat., 47 (2003), 103-131.  doi: 10.5565/PUBLMAT_47103_05.

[9]

G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.  doi: 10.1006/jfan.1993.1032.

[10]

Y. DingS. Z. Lu and P. Zhang, Weak estimates for commutators of fractional integral operators, Sci. China Ser. A, 44 (2001), 877-887.  doi: 10.1007/BF02880137.

[11]

D. FanS. Lu and D. Yang, Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 14 (1998), 625-634. 

[12]

V. S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in $\mathbb{R}^n$, Doctoral dissertation, Mat. Inst. Steklov, Moscow, 1994.

[13]

V. S. Guliyev, Function Spaces, Integral Operators and two Weighted Inequalities on Homogeneous Groups. Some Applications, Baku, Elm, 1999.

[14]

V. S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., (2009), Art. ID 503948, 20 pp.

[15]

V. S. Guliyev, Local generalized Morrey spaces and singular integrals with rough kernel, Azerb. J. Math., 3 (2013), 79-94. 

[16]

V. S. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.), 193 (2013), 211-227.  doi: 10.1007/s10958-013-1448-9.

[17]

V. S. Guliyev, Function spaces and integral operators associated with Schrödinger operators: An overview, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40 (2014), 178-202. 

[18]

V. S. GuliyevM. N. OmarovaM. A. Ragusa and A. Scapellato, Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., 457 (2018), 1388-1402.  doi: 10.1016/j.jmaa.2016.09.070.

[19]

V. S. Guliyev and L. Softova, Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal., 38 (2013), 843-862.  doi: 10.1007/s11118-012-9299-4.

[20]

V. S. Guliyev and L. Softova, Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations, 259 (2015), 2368-2387.  doi: 10.1016/j.jde.2015.03.032.

[21]

T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (Sendai, 1990), ICM 90 Satellite Proceedings, Springer-Verlag, Tokyo, 1991,183–189.

[22]

C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.  doi: 10.1090/S0002-9947-1938-1501936-8.

[23]

E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95-103.  doi: 10.1002/mana.19941660108.

[24]

J. J. Nieto and C. C. Tisdell, Existence and uniqueness of solutions to first-order systems of nonlinear impulsive boundary-value problems with sub-, super-linear or linear growth, Electron. J. Differential Equations, 2007 (2007), 1-14. 

[25]

M. Otelbaev, Imbedding theorems for spaces with weight and their use in investigating the spectrum of the Schrödinger operator, Trudy Mat. Inst. Steklov., 150 (1979), 265-305. 

[26]

M. Otelbaev, Spectrum Estimates of the Sturm-Liouville Operator, Alma Ata, Gylym, 1990.

[27]

C. Perez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163-185.  doi: 10.1006/jfan.1995.1027.

[28]

S. Polidoro and M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341-350.  doi: 10.1023/A:1011261019736.

[29]

M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385-397.  doi: 10.1215/S0012-7094-02-11327-1.

[30]

M. A. Ragusa and A. Tachikawa, On continuity of minimizers for certain quadratic growth functionals, J. Math. Soc. Japan, 57 (2005), 691-700.  doi: 10.2969/jmsj/1158241929.

[31]

Z. Shen, $L_p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513-546.  doi: 10.5802/aif.1463.

[32]

L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.), 22 (2006), 757-766.  doi: 10.1007/s10114-005-0628-z.

[33]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.

[34]

L. Tang and J. Dong, Boundedness for some Schrödinger type operator on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101-109.  doi: 10.1016/j.jmaa.2009.01.043.

[35]

R. Wheeden and A. Zygmund, Measure and Integral, An Introduction to Real Analysis, Pure and Applied Mathematics, 43, Marcel Dekker, Inc., New York-Basel, 1977.

[36]

H. K. Xu and J. J. Nieto, Extremal solutions of a class of nonlinear integro-differential equations in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 2605-2614.  doi: 10.1090/S0002-9939-97-04149-X.

[37]

J. Zhong, Harmonic Analysis for some Schrödinger Type Operators, Ph.D. thesis, Princeton University, 1993.

show all references

References:
[1]

A. Akbulut, V. S. Guliyev and M. N. Omarova, Marcinkiewicz integrals associated with Schrödinger operators and their commutators on vanishing generalized Morrey spaces, Bound. Value Probl., (2017), Paper No. 121, 16 pp. doi: 10.1186/s13661-017-0851-4.

[2]

J. AlvarezJ. Lakey and M. Guzman-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math., 51 (2000), 1-47. 

[3]

A. S. BerdyshevB. J. Kadirkulov and J. J. Nieto, Solvability of an elliptic partial differential equation with boundary condition involving fractional derivatives, Complex Var. Elliptic Equ., 59 (2014), 680-692.  doi: 10.1080/17476933.2013.777711.

[4]

B. BongioanniE. Harboure and O. Salinas, Commutators of Riesz transforms related to Schödinger operators, J. Fourier Anal. Appl., 17 (2011), 115-134.  doi: 10.1007/s00041-010-9133-6.

[5]

T. Bui, Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270-292.  doi: 10.1016/j.bulsci.2013.06.007.

[6]

D. Chen and L. Song, The boundedness of the commutator for Riesz potential associated with Schrödinger operator on Morrey spaces, Anal. Theory Appl., 30 (2014), 363-368.  doi: 10.4208/ata.2014.v30.n4.3.

[7]

F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., 7 (1987), 273-279. 

[8]

D. Cruz-Uribe and A. Fiorenza, Endpoint estimates and weighted norm inequalities for commutators of fractional integrals, Publ. Mat., 47 (2003), 103-131.  doi: 10.5565/PUBLMAT_47103_05.

[9]

G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.  doi: 10.1006/jfan.1993.1032.

[10]

Y. DingS. Z. Lu and P. Zhang, Weak estimates for commutators of fractional integral operators, Sci. China Ser. A, 44 (2001), 877-887.  doi: 10.1007/BF02880137.

[11]

D. FanS. Lu and D. Yang, Boundedness of operators in Morrey spaces on homogeneous spaces and its applications, Acta Math. Sinica (N.S.), 14 (1998), 625-634. 

[12]

V. S. Guliyev, Integral Operators on Function Spaces on the Homogeneous Groups and on Domains in $\mathbb{R}^n$, Doctoral dissertation, Mat. Inst. Steklov, Moscow, 1994.

[13]

V. S. Guliyev, Function Spaces, Integral Operators and two Weighted Inequalities on Homogeneous Groups. Some Applications, Baku, Elm, 1999.

[14]

V. S. Guliyev, Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces, J. Inequal. Appl., (2009), Art. ID 503948, 20 pp.

[15]

V. S. Guliyev, Local generalized Morrey spaces and singular integrals with rough kernel, Azerb. J. Math., 3 (2013), 79-94. 

[16]

V. S. Guliyev, Generalized local Morrey spaces and fractional integral operators with rough kernel, J. Math. Sci. (N.Y.), 193 (2013), 211-227.  doi: 10.1007/s10958-013-1448-9.

[17]

V. S. Guliyev, Function spaces and integral operators associated with Schrödinger operators: An overview, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40 (2014), 178-202. 

[18]

V. S. GuliyevM. N. OmarovaM. A. Ragusa and A. Scapellato, Commutators and generalized local Morrey spaces, J. Math. Anal. Appl., 457 (2018), 1388-1402.  doi: 10.1016/j.jmaa.2016.09.070.

[19]

V. S. Guliyev and L. Softova, Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal., 38 (2013), 843-862.  doi: 10.1007/s11118-012-9299-4.

[20]

V. S. Guliyev and L. Softova, Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients, J. Differential Equations, 259 (2015), 2368-2387.  doi: 10.1016/j.jde.2015.03.032.

[21]

T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic Analysis (Sendai, 1990), ICM 90 Satellite Proceedings, Springer-Verlag, Tokyo, 1991,183–189.

[22]

C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.  doi: 10.1090/S0002-9947-1938-1501936-8.

[23]

E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166 (1994), 95-103.  doi: 10.1002/mana.19941660108.

[24]

J. J. Nieto and C. C. Tisdell, Existence and uniqueness of solutions to first-order systems of nonlinear impulsive boundary-value problems with sub-, super-linear or linear growth, Electron. J. Differential Equations, 2007 (2007), 1-14. 

[25]

M. Otelbaev, Imbedding theorems for spaces with weight and their use in investigating the spectrum of the Schrödinger operator, Trudy Mat. Inst. Steklov., 150 (1979), 265-305. 

[26]

M. Otelbaev, Spectrum Estimates of the Sturm-Liouville Operator, Alma Ata, Gylym, 1990.

[27]

C. Perez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163-185.  doi: 10.1006/jfan.1995.1027.

[28]

S. Polidoro and M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341-350.  doi: 10.1023/A:1011261019736.

[29]

M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385-397.  doi: 10.1215/S0012-7094-02-11327-1.

[30]

M. A. Ragusa and A. Tachikawa, On continuity of minimizers for certain quadratic growth functionals, J. Math. Soc. Japan, 57 (2005), 691-700.  doi: 10.2969/jmsj/1158241929.

[31]

Z. Shen, $L_p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513-546.  doi: 10.5802/aif.1463.

[32]

L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser.), 22 (2006), 757-766.  doi: 10.1007/s10114-005-0628-z.

[33]

E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.

[34]

L. Tang and J. Dong, Boundedness for some Schrödinger type operator on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101-109.  doi: 10.1016/j.jmaa.2009.01.043.

[35]

R. Wheeden and A. Zygmund, Measure and Integral, An Introduction to Real Analysis, Pure and Applied Mathematics, 43, Marcel Dekker, Inc., New York-Basel, 1977.

[36]

H. K. Xu and J. J. Nieto, Extremal solutions of a class of nonlinear integro-differential equations in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 2605-2614.  doi: 10.1090/S0002-9939-97-04149-X.

[37]

J. Zhong, Harmonic Analysis for some Schrödinger Type Operators, Ph.D. thesis, Princeton University, 1993.

[1]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014

[2]

Yixuan Wu, Yanzhi Zhang. Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 851-876. doi: 10.3934/dcdss.2022016

[3]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3703-3718. doi: 10.3934/dcdss.2021020

[4]

Nguyen Dinh Cong, Roberta Fabbri. On the spectrum of the one-dimensional Schrödinger operator. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 541-554. doi: 10.3934/dcdsb.2008.9.541

[5]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[6]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[7]

Xing-Bin Pan. An eigenvalue variation problem of magnetic Schrödinger operator in three dimensions. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 933-978. doi: 10.3934/dcds.2009.24.933

[8]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[9]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[10]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems and Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[11]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems and Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[12]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems and Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[13]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[14]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[15]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[16]

Yulong Li, Aleksey S. Telyakovskiy, Emine Çelik. Analysis of one-sided 1-D fractional diffusion operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1673-1690. doi: 10.3934/cpaa.2022039

[17]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[18]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[19]

Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099

[20]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (364)
  • HTML views (132)
  • Cited by (1)

[Back to Top]