February  2020, 25(2): 701-713. doi: 10.3934/dcdsb.2019262

A note on the Lasota discrete model for blood cell production

1. 

Departamento de Matemática Aplicada Ⅱ, Universidade de Vigo, 36310 Vigo, Spain

2. 

Instituto de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain

Dedicated to Prof. Juan J. Nieto on the occasion of his 60th birthday

Received  January 2019 Revised  March 2019 Published  November 2019

In an attempt to explain experimental evidence of chaotic oscillations in blood cell population, A. Lasota suggested in 1977 a discrete-time one-dimensional model for the production of blood cells, and he showed that this equation allows to model the behavior of blood cell population in many clinical cases. Our main aim in this note is to carry out a detailed study of Lasota's equation, in particular revisiting the results in the original paper and showing new interesting phenomena. The considered equation is also suitable to model the dynamics of populations with discrete reproductive seasons, adult survivorship, overcompensating density dependence, and Allee effects. In this context, our results show the rich dynamics of this type of models and point out the subtle interplay between adult survivorship rates and strength of density dependence (including Allee effects).

Citation: Eduardo Liz, Cristina Lois-Prados. A note on the Lasota discrete model for blood cell production. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 701-713. doi: 10.3934/dcdsb.2019262
References:
[1]

P. A. Abrams, When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462-474.  doi: 10.1111/j.1461-0248.2009.01282.x.  Google Scholar

[2]

L. Avilés, Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality, Evol. Ecol. Res., 1 (1999), 459-477.   Google Scholar

[3]

E. Braverman and E. Liz, Global stabilization of periodic orbits using a proportional feedback control with pulses, Nonlinear Dynam., 67 (2012), 2467-2475.  doi: 10.1007/s11071-011-0160-x.  Google Scholar

[4] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2008.  doi: 10.1093/acprof:oso/9780198570301.001.0001.  Google Scholar
[5]

A. Lasota, Ergodic problems in biology, Asterisque, 50 (1977), 239-250.   Google Scholar

[6]

E. Liz, Complex dynamics of survival and extinction in simple population models with harvesting, Theor. Ecol., 3 (2010), 209-221.  doi: 10.1007/s12080-009-0064-2.  Google Scholar

[7]

E. Liz, A new flexible discrete-time model for stable populations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2487-2498.  doi: 10.3934/dcdsb.2018066.  Google Scholar

[8]

E. Liz, A global picture of the gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.  doi: 10.1007/s11538-017-0382-2.  Google Scholar

[9]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., (2019), 1-12.  doi: 10.1007/s12346-018-00314-4.  Google Scholar

[10]

E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pp. doi: 10.1063/1.3432558.  Google Scholar

[11]

E. Liz and A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65 (2012), 997-1016.  doi: 10.1007/s00285-011-0489-2.  Google Scholar

[12]

P. J. Mitkowski, Chaos in the Ergodic Theory Approach in the Model of Disturbed Erythropoiesis, Ph.D. Thesis, AGH University of Science and Technology, Cracow, 2011. Google Scholar

[13] T. J. Quinn and R. B. Deriso, Quantitative Fish Dynamics,, Oxford University Press, New York, 1999.   Google Scholar
[14]

S. J. Schreiber, Chaos and population disappearances in simple ecological models, J. Math. Biol., 42 (2001), 239-260.  doi: 10.1007/s002850000070.  Google Scholar

[15]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[16]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the red-blood cell system, Mat. Stos., 6 (1976), 25-40.   Google Scholar

[17]

A. A. YakubuN. LiJ. M. Conrad and M. L. Zeeman, Constant proportion harvest policies: Dynamic implications in the Pacific halibut and Atlantic cod fisheries, Math. Biosci., 232 (2011), 66-77.  doi: 10.1016/j.mbs.2011.04.004.  Google Scholar

show all references

References:
[1]

P. A. Abrams, When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462-474.  doi: 10.1111/j.1461-0248.2009.01282.x.  Google Scholar

[2]

L. Avilés, Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality, Evol. Ecol. Res., 1 (1999), 459-477.   Google Scholar

[3]

E. Braverman and E. Liz, Global stabilization of periodic orbits using a proportional feedback control with pulses, Nonlinear Dynam., 67 (2012), 2467-2475.  doi: 10.1007/s11071-011-0160-x.  Google Scholar

[4] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2008.  doi: 10.1093/acprof:oso/9780198570301.001.0001.  Google Scholar
[5]

A. Lasota, Ergodic problems in biology, Asterisque, 50 (1977), 239-250.   Google Scholar

[6]

E. Liz, Complex dynamics of survival and extinction in simple population models with harvesting, Theor. Ecol., 3 (2010), 209-221.  doi: 10.1007/s12080-009-0064-2.  Google Scholar

[7]

E. Liz, A new flexible discrete-time model for stable populations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2487-2498.  doi: 10.3934/dcdsb.2018066.  Google Scholar

[8]

E. Liz, A global picture of the gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.  doi: 10.1007/s11538-017-0382-2.  Google Scholar

[9]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., (2019), 1-12.  doi: 10.1007/s12346-018-00314-4.  Google Scholar

[10]

E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pp. doi: 10.1063/1.3432558.  Google Scholar

[11]

E. Liz and A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65 (2012), 997-1016.  doi: 10.1007/s00285-011-0489-2.  Google Scholar

[12]

P. J. Mitkowski, Chaos in the Ergodic Theory Approach in the Model of Disturbed Erythropoiesis, Ph.D. Thesis, AGH University of Science and Technology, Cracow, 2011. Google Scholar

[13] T. J. Quinn and R. B. Deriso, Quantitative Fish Dynamics,, Oxford University Press, New York, 1999.   Google Scholar
[14]

S. J. Schreiber, Chaos and population disappearances in simple ecological models, J. Math. Biol., 42 (2001), 239-260.  doi: 10.1007/s002850000070.  Google Scholar

[15]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[16]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the red-blood cell system, Mat. Stos., 6 (1976), 25-40.   Google Scholar

[17]

A. A. YakubuN. LiJ. M. Conrad and M. L. Zeeman, Constant proportion harvest policies: Dynamic implications in the Pacific halibut and Atlantic cod fisheries, Math. Biosci., 232 (2011), 66-77.  doi: 10.1016/j.mbs.2011.04.004.  Google Scholar

Figure 2.1.  Graphs of the map $ F $ for $ \gamma = 0.3 $, $ c = 0.6 $, and different values of $ \sigma $: $ \sigma = 0.6<\sigma^*\approx0.774 $ in red ($ F $ is increasing), and $ \sigma = 0.9>\sigma^* $ in blue ($ F $ has two critical points). The dashed line is the graph of $ y = x $
Figure 2.2.  Graphs of the map $ F' $ (solid, blue) and the line $ y = 0 $ (dashed, black), with c = 1. (a): $ \gamma = 0.25<1 $, $ \sigma = 0.8>\sigma^*\approx0.707 $; (b): $ \gamma = 2>1 $, $ \sigma = 0.9>\sigma^*\approx0.841 $. In both cases, there are two intersection points, that determine the critical points of $ F $
Figure 3.1.  Graphs of the map $ F $ for $ \gamma = 8 $, $ \sigma = 0.8 $, and different values of $ c $: $ c = c^*\approx0.425 $ in blue (one positive fixed point), $ c = 0.4<c^* $ in red (no positive fixed points), and $ c = 0.5>c^* $ in black (two positive fixed points). The dashed line is the graph of $ y = x $
Figure 4.1.  Main bifurcation boundaries and regions with different dynamical behavior for equation (1.2) with $ c = 0.47 $, in the parameter plane $ (\gamma,\sigma) $. The two solid lines represent the extinction boundary (red color) and the stability boundary of the largest positive equilibrium (blue color). The vertical dashed line $ \gamma = 1 $ (from $ \sigma = 0 $ to $ \sigma = c = 0.47 $) is the border between global stability of the unique positive equilibrium and a bistability region, in which both the largest positive equilibrium and the extinction equilibrium are asymptotically stable
Figure 4.2.  Bifurcation diagram showing a bubble for equation (1.2) with $ c = 0.47 $, $ \gamma = 7.65 $, using $ \sigma $ as the bifurcation parameter. Black dashed lines correspond to unstable equilibria
Figure 4.3.  Bifurcation diagrams for equation (1.2) with $ c = 0.47 $, using $ \sigma $ as the bifurcation parameter. Black dashed lines correspond to unstable equilibria. For more details, see the text. (a): $ \gamma = 7 $; (b): $ \gamma = 8 $; (c): $ \gamma = 8.5 $ and $ \sigma\in (0,1) $; (d): magnification for $ \gamma = 8.5 $
Figure 4.4.  Bifurcation diagrams for equation (1.2) with $ c = 0.47 $ and different values of $ \sigma $, using $ \gamma $ as the bifurcation parameter. Black dashed lines correspond to unstable equilibria, and red dashed lines to unstable 2-periodic orbits. (a): There are neither oscillations nor extinction windows for $ \sigma = 0.05 $. (b): An extinction window for $ \sigma = 0.1 $. (c): Multiple extinction windows for $ \sigma = 0.9 $
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[3]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[8]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[9]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[10]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[11]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[12]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[13]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[14]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[15]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[16]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[17]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[18]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[19]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[20]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (155)
  • HTML views (139)
  • Cited by (1)

Other articles
by authors

[Back to Top]