February  2020, 25(2): 715-732. doi: 10.3934/dcdsb.2019263

Boundary value problem: Weak solutions induced by fuzzy partitions

Institute for Research and Applications of Fuzzy Modelling, NSC IT4Innovations, University of Ostrava, 30. dubna 22,701 03 Ostrava 1, Czech Republic

* Corresponding author: Irina Perfilieva

Received  January 2019 Revised  August 2019 Published  November 2019

Fund Project: This research was supported by the Czech Ministry of Education, Youth and Sports, project OP VVV (AI-Met4AI): No. CZ.02.1.01/0.0/0.0/17-049/0008414. Additional support was given by the Grant Agency of the Czech Republic, project 18-06915S.

The aim of this paper is to propose a new methodology in the construction of spaces of test functions used in a weak formulation of the Boundary Value Problem. The proposed construction is based on the so called "two dimensional" approach where at first, we select a partition of a domain and second, a dimension of an approximating functional subspace on each partition element. The main advantage consists in the independent selection of the key parameters, aiming at achieving a requested quality of approximation with a reasonable complexity. We give theoretical justification and illustration on examples that confirm our methodology.

Citation: Linh Nguyen, Irina Perfilieva, Michal Holčapek. Boundary value problem: Weak solutions induced by fuzzy partitions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 715-732. doi: 10.3934/dcdsb.2019263
References:
[1]

K. W. Anthony, Advanced Real Analysis, Birkhäuser, 2005. Google Scholar

[2]

I. BabuškaU. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numer., 12 (2003), 1-125.  doi: 10.1017/S0962492902000090.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[5] K. W. Cassel, Variational Methods With Applications in Science and Engineering, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139136860.  Google Scholar
[6]

D. Čena, Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 1850061, 27 pp. doi: 10.1142/S0219691318500613.  Google Scholar

[7]

P. Ciarlet, The Finite Element Method for Elliptic Problems, Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1137/1.9780898719208.  Google Scholar

[8]

B. C. CuongN. C. Luong and H. V. Long, Approximation properties of fuzzy systems for multi-variables functions, PanAmer. Math. J., 20 (2010), 97-113.   Google Scholar

[9]

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. doi: 10.1007/978-3-642-85949-6.  Google Scholar

[10]

M. HolčapekI. PerfilievaV. Novák and V. Kreinovich, Necessary and sufficient conditions for generalized uniform fuzzy partitions, Fuzzy Sets and Systems, 277 (2015), 97-121.  doi: 10.1016/j.fss.2014.10.017.  Google Scholar

[11]

K. HölligR. Ulrich and W. Joachim, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39 (2001), 442-462.  doi: 10.1137/S0036142900373208.  Google Scholar

[12]

H. V. Long, A note on the rates of uniform approximation of fuzzy systems, Internat. J. Comput. Intelligence Systems, 4 (2011), 712-727.  doi: 10.2991/ijcis.2011.4.4.24.  Google Scholar

[13]

J. M. Melenk, On approximation in meshless methods, in Frontiers of Numerical Analysis, Universitext, Springer, Berlin, 2005, 65–141. doi: 10.1007/3-540-28884-8_2.  Google Scholar

[14]

L. Nguyen, I. Perfilieva and M. Holčapek, Weak boundary value problem: Fuzzy partition in Galerkin method, World Scientific Proceedings Series on Computer Engineering and Information Science, (2018), 1478–1485. doi: 10.1142/9789813273238_0184.  Google Scholar

[15]

I. Perfilieva, Fuzzy transforms: Theory and applications, Fuzzy Sets and Systems, 157 (2006), 993-1023.  doi: 10.1016/j.fss.2005.11.012.  Google Scholar

[16]

I. PerfilievaA. P. Singh and S. P. Tiwari, On the relationship among $F$-transform, fuzzy rough set and fuzzy topology, Soft Computing, 21 (2017), 3513-3523.  doi: 10.1007/s00500-017-2559-x.  Google Scholar

[17]

I. PerfilievaM. Daňková and B. Bede, Towards a higher degree $F$-transform, Fuzzy Sets and Systems, 180 (2011), 3-19.  doi: 10.1016/j.fss.2010.11.002.  Google Scholar

[18]

I. Perfilieva and P. Vlašánek, F-transform and discrete convolution, Proc. of the EUSFLAT Conf., (2015), 1054–1059. Google Scholar

[19]

D. B. Reddy, Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements, Texts in Applied Mathematics, 27, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0575-3.  Google Scholar

[20]

K. Rektorys, Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Co., Dordrecht-Boston, MA, 1977. doi: 10.1007/978-94-011-6450-4.  Google Scholar

[21]

J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51, Springer, Cham, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

J. G. Wang and G. Liu, A point interpolation meshless method based on radial basis functions, Internat. J. Numerical Methods in Engineering, 54 (2002), 1623-1648.  doi: 10.1002/nme.489.  Google Scholar

show all references

References:
[1]

K. W. Anthony, Advanced Real Analysis, Birkhäuser, 2005. Google Scholar

[2]

I. BabuškaU. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numer., 12 (2003), 1-125.  doi: 10.1017/S0962492902000090.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[5] K. W. Cassel, Variational Methods With Applications in Science and Engineering, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139136860.  Google Scholar
[6]

D. Čena, Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 1850061, 27 pp. doi: 10.1142/S0219691318500613.  Google Scholar

[7]

P. Ciarlet, The Finite Element Method for Elliptic Problems, Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1137/1.9780898719208.  Google Scholar

[8]

B. C. CuongN. C. Luong and H. V. Long, Approximation properties of fuzzy systems for multi-variables functions, PanAmer. Math. J., 20 (2010), 97-113.   Google Scholar

[9]

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. doi: 10.1007/978-3-642-85949-6.  Google Scholar

[10]

M. HolčapekI. PerfilievaV. Novák and V. Kreinovich, Necessary and sufficient conditions for generalized uniform fuzzy partitions, Fuzzy Sets and Systems, 277 (2015), 97-121.  doi: 10.1016/j.fss.2014.10.017.  Google Scholar

[11]

K. HölligR. Ulrich and W. Joachim, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39 (2001), 442-462.  doi: 10.1137/S0036142900373208.  Google Scholar

[12]

H. V. Long, A note on the rates of uniform approximation of fuzzy systems, Internat. J. Comput. Intelligence Systems, 4 (2011), 712-727.  doi: 10.2991/ijcis.2011.4.4.24.  Google Scholar

[13]

J. M. Melenk, On approximation in meshless methods, in Frontiers of Numerical Analysis, Universitext, Springer, Berlin, 2005, 65–141. doi: 10.1007/3-540-28884-8_2.  Google Scholar

[14]

L. Nguyen, I. Perfilieva and M. Holčapek, Weak boundary value problem: Fuzzy partition in Galerkin method, World Scientific Proceedings Series on Computer Engineering and Information Science, (2018), 1478–1485. doi: 10.1142/9789813273238_0184.  Google Scholar

[15]

I. Perfilieva, Fuzzy transforms: Theory and applications, Fuzzy Sets and Systems, 157 (2006), 993-1023.  doi: 10.1016/j.fss.2005.11.012.  Google Scholar

[16]

I. PerfilievaA. P. Singh and S. P. Tiwari, On the relationship among $F$-transform, fuzzy rough set and fuzzy topology, Soft Computing, 21 (2017), 3513-3523.  doi: 10.1007/s00500-017-2559-x.  Google Scholar

[17]

I. PerfilievaM. Daňková and B. Bede, Towards a higher degree $F$-transform, Fuzzy Sets and Systems, 180 (2011), 3-19.  doi: 10.1016/j.fss.2010.11.002.  Google Scholar

[18]

I. Perfilieva and P. Vlašánek, F-transform and discrete convolution, Proc. of the EUSFLAT Conf., (2015), 1054–1059. Google Scholar

[19]

D. B. Reddy, Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements, Texts in Applied Mathematics, 27, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0575-3.  Google Scholar

[20]

K. Rektorys, Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Co., Dordrecht-Boston, MA, 1977. doi: 10.1007/978-94-011-6450-4.  Google Scholar

[21]

J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51, Springer, Cham, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

J. G. Wang and G. Liu, A point interpolation meshless method based on radial basis functions, Internat. J. Numerical Methods in Engineering, 54 (2002), 1623-1648.  doi: 10.1002/nme.489.  Google Scholar

Table 1.  The approximation quality with respect to the degree of polynomials ($ m $) and the number of basic functions ($ N $)
Example 1
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 4.24\times10^{-3} $ $ 3.34\times10^{-4} $ $ 8.61\times10^{-5} $ $ 3.39\times10^{-5} $
2 $ 2.34\times10^{-5} $ $ 7.92\times10^{-7} $ $ 1.30\times10^{-7} $ $ 3.70\times10^{-8} $
3 $ 1.44\times10^{-7} $ $ 2.09\times10^{-9} $ $ 2.17\times10^{-10} $ $ 4.55\times10^{-11} $
4 $ 1.10\times10^{-9} $ $ 1.27\times10^{-11} $ $ 1.24\times10^{-11} $ $ 9.41\times10^{-12} $
Example 2
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 7.30\times10^{-3} $ $ 1.64\times10^{-3} $ $ 8.83\times10^{-4} $ $ 6.24\times10^{-4} $
2 $ 4.21\times10^{-3} $ $ 1.52\times10^{-3} $ $ 8.80\times10^{-4} $ $ 6.23\times10^{-4} $
3 $ 2.23\times10^{-3} $ $ 7.87\times10^{-4} $ $ 4.86\times10^{-4} $ $ 3.54\times10^{-4} $
4 $ 2.13\times10^{-3} $ $ 7.85\times10^{-4} $ $ 4.75\times10^{-4} $ $ 3.52\times10^{-4} $
Example 3
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 1.0308 $ $ 0.7448 $ $ 0.5683 $ $ 0.2451 $
2 $ 0.8802 $ $ 0.5818 $ $ 0.1846 $ $ 9.83\times10^{-2} $
3 $ 0.8501 $ $ 0.3572 $ $ 9.60\times10^{-2} $ $ 2.03\times10^{-2} $
4 $ 0.8338 $ $ 0.2113 $ $ 3.67\times10^{-2} $ $ 7.41\times10^{-3} $
Example 4
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 2.07\times10^{-2} $ $ 1.71\times10^{-3} $ $ 4.36\times10^{-4} $ $ 1.72\times10^{-4} $
2 $ 1.40\times10^{-3} $ $ 4.99\times10^{-5} $ $ 8.26\times10^{-6} $ $ 2.37\times10^{-6} $
3 $ 7.52\times10^{-5} $ $ 1.15\times10^{-6} $ $ 1.21\times10^{-7} $ $ 2.49\times10^{-8} $
4 $ 3.28\times10^{-6} $ $ 2.15\times10^{-8} $ $ 1.44\times10^{-9} $ $ 2.16\times10^{-10} $
Example 1
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 4.24\times10^{-3} $ $ 3.34\times10^{-4} $ $ 8.61\times10^{-5} $ $ 3.39\times10^{-5} $
2 $ 2.34\times10^{-5} $ $ 7.92\times10^{-7} $ $ 1.30\times10^{-7} $ $ 3.70\times10^{-8} $
3 $ 1.44\times10^{-7} $ $ 2.09\times10^{-9} $ $ 2.17\times10^{-10} $ $ 4.55\times10^{-11} $
4 $ 1.10\times10^{-9} $ $ 1.27\times10^{-11} $ $ 1.24\times10^{-11} $ $ 9.41\times10^{-12} $
Example 2
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 7.30\times10^{-3} $ $ 1.64\times10^{-3} $ $ 8.83\times10^{-4} $ $ 6.24\times10^{-4} $
2 $ 4.21\times10^{-3} $ $ 1.52\times10^{-3} $ $ 8.80\times10^{-4} $ $ 6.23\times10^{-4} $
3 $ 2.23\times10^{-3} $ $ 7.87\times10^{-4} $ $ 4.86\times10^{-4} $ $ 3.54\times10^{-4} $
4 $ 2.13\times10^{-3} $ $ 7.85\times10^{-4} $ $ 4.75\times10^{-4} $ $ 3.52\times10^{-4} $
Example 3
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 1.0308 $ $ 0.7448 $ $ 0.5683 $ $ 0.2451 $
2 $ 0.8802 $ $ 0.5818 $ $ 0.1846 $ $ 9.83\times10^{-2} $
3 $ 0.8501 $ $ 0.3572 $ $ 9.60\times10^{-2} $ $ 2.03\times10^{-2} $
4 $ 0.8338 $ $ 0.2113 $ $ 3.67\times10^{-2} $ $ 7.41\times10^{-3} $
Example 4
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 2.07\times10^{-2} $ $ 1.71\times10^{-3} $ $ 4.36\times10^{-4} $ $ 1.72\times10^{-4} $
2 $ 1.40\times10^{-3} $ $ 4.99\times10^{-5} $ $ 8.26\times10^{-6} $ $ 2.37\times10^{-6} $
3 $ 7.52\times10^{-5} $ $ 1.15\times10^{-6} $ $ 1.21\times10^{-7} $ $ 2.49\times10^{-8} $
4 $ 3.28\times10^{-6} $ $ 2.15\times10^{-8} $ $ 1.44\times10^{-9} $ $ 2.16\times10^{-10} $
Table 2.  The approximation quality with respect to the degree of polynomials ($m$) and the number of basic functions ($N$)
Example 3
$\bf{m}$ $\setminus$ $\bf{N}$ $32$ $64$ $128$ $256$
1 $4.40\times10^{-2}$ $5.62\times10^{-3}$ $7.07\times10^{-4}$ $8.78\times10^{-5}$
2 $6.20\times10^{-3}$ $4.13\times10^{-4}$ $2.54\times10^{-5}$ $1.57\times10^{-6}$
3 $9.25\times10^{-4}$ $2.64\times10^{-5}$ $8.08\times10^{-7}$ $2.24\times10^{-8}$
4 $9.20\times10^{-5}$ $1.55\times10^{-6}$ $2.23\times10^{-8}$ $5.54\times10^{-10}$
Example 3
$\bf{m}$ $\setminus$ $\bf{N}$ $32$ $64$ $128$ $256$
1 $4.40\times10^{-2}$ $5.62\times10^{-3}$ $7.07\times10^{-4}$ $8.78\times10^{-5}$
2 $6.20\times10^{-3}$ $4.13\times10^{-4}$ $2.54\times10^{-5}$ $1.57\times10^{-6}$
3 $9.25\times10^{-4}$ $2.64\times10^{-5}$ $8.08\times10^{-7}$ $2.24\times10^{-8}$
4 $9.20\times10^{-5}$ $1.55\times10^{-6}$ $2.23\times10^{-8}$ $5.54\times10^{-10}$
Table 3.  The comparison of the proposed method (FPP) and the piecewise linear FEM based on the approximation errors and the convergence rates
Example 1
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.8\times10^{-3} $ _ $ 2.3\times10^{-2} $ _
$ 16 $ $ 2.2\times10^{-4} $ 3.03 $ 4.9\times10^{-3} $ 2.23
$ 32 $ $ 2.8\times10^{-5} $ 2.97 $ 1.1\times10^{-3} $ 2.16
$ 64 $ $ 3.3\times10^{-6} $ 3.08 $ 2.8\times10^{-4} $ 1.97
$ 128 $ $ 4.5\times10^{-7} $ 2.87 $ 6.8\times10^{-5} $ 2.04
$ 256 $ $ 5.1\times10^{-8} $ 3.14 $ 1.7\times10^{-5} $ 2.00
Example 2
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 7.3\times10^{-3} $ _ $ 2.2\times10^{-2} $ _
$ 16 $ $ 1.6\times10^{-3} $ 2.19 $ 5.4\times10^{-3} $ 2.03
$ 32 $ $ 6.2\times10^{-4} $ 1.37 $ 1.7\times10^{-3} $ 1.67
$ 64 $ $ 3.0\times10^{-4} $ 1.05 $ 6.5\times10^{-4} $ 1.39
$ 128 $ $ 1.5\times10^{-4} $ 1.00 $ 2.9\times10^{-4} $ 1.16
$ 256 $ $ 8.6\times10^{-5} $ 8.03 $ 1.4\times10^{-4} $ 1.05
Example 3
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 0.9785 $ _ $ 1.0055 $ _
$ 16 $ $ 0.6878 $ 5.09 $ 0.8559 $ 2.32
$ 32 $ $ 0.2447 $ 1.49 $ 0.2764 $ 1.63
$ 64 $ $ 3.9\times10^{-2} $ 2.65 $ 7.1\times10^{-2} $ 1.96
$ 128 $ $ 5.4\times10^{-3} $ 2.85 $ 1.8\times10^{-2} $ 1.98
$ 256 $ $ 6.9\times10^{-4} $ 2.97 $ 4.4\times10^{-3} $ 2.03
Example 4
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.1\times10^{-2} $ _ $ 4.9\times10^{-2} $ _
$ 16 $ $ 1.7\times10^{-3} $ 2.69 $ 1.1\times10^{-2} $ 2.16
$ 32 $ $ 1.7\times10^{-4} $ 3.32 $ 2.6\times10^{-3} $ 2.08
$ 64 $ $ 1.9\times10^{-5} $ 3.16 $ 6.2\times10^{-4} $ 2.07
$ 128 $ $ 2.4\times10^{-6} $ 2.98 $ 1.5\times10^{-4} $ 2.05
$ 256 $ $ 3.1\times10^{-7} $ 2.95 $ 3.8\times10^{-5} $ 1.98
Example 1
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.8\times10^{-3} $ _ $ 2.3\times10^{-2} $ _
$ 16 $ $ 2.2\times10^{-4} $ 3.03 $ 4.9\times10^{-3} $ 2.23
$ 32 $ $ 2.8\times10^{-5} $ 2.97 $ 1.1\times10^{-3} $ 2.16
$ 64 $ $ 3.3\times10^{-6} $ 3.08 $ 2.8\times10^{-4} $ 1.97
$ 128 $ $ 4.5\times10^{-7} $ 2.87 $ 6.8\times10^{-5} $ 2.04
$ 256 $ $ 5.1\times10^{-8} $ 3.14 $ 1.7\times10^{-5} $ 2.00
Example 2
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 7.3\times10^{-3} $ _ $ 2.2\times10^{-2} $ _
$ 16 $ $ 1.6\times10^{-3} $ 2.19 $ 5.4\times10^{-3} $ 2.03
$ 32 $ $ 6.2\times10^{-4} $ 1.37 $ 1.7\times10^{-3} $ 1.67
$ 64 $ $ 3.0\times10^{-4} $ 1.05 $ 6.5\times10^{-4} $ 1.39
$ 128 $ $ 1.5\times10^{-4} $ 1.00 $ 2.9\times10^{-4} $ 1.16
$ 256 $ $ 8.6\times10^{-5} $ 8.03 $ 1.4\times10^{-4} $ 1.05
Example 3
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 0.9785 $ _ $ 1.0055 $ _
$ 16 $ $ 0.6878 $ 5.09 $ 0.8559 $ 2.32
$ 32 $ $ 0.2447 $ 1.49 $ 0.2764 $ 1.63
$ 64 $ $ 3.9\times10^{-2} $ 2.65 $ 7.1\times10^{-2} $ 1.96
$ 128 $ $ 5.4\times10^{-3} $ 2.85 $ 1.8\times10^{-2} $ 1.98
$ 256 $ $ 6.9\times10^{-4} $ 2.97 $ 4.4\times10^{-3} $ 2.03
Example 4
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.1\times10^{-2} $ _ $ 4.9\times10^{-2} $ _
$ 16 $ $ 1.7\times10^{-3} $ 2.69 $ 1.1\times10^{-2} $ 2.16
$ 32 $ $ 1.7\times10^{-4} $ 3.32 $ 2.6\times10^{-3} $ 2.08
$ 64 $ $ 1.9\times10^{-5} $ 3.16 $ 6.2\times10^{-4} $ 2.07
$ 128 $ $ 2.4\times10^{-6} $ 2.98 $ 1.5\times10^{-4} $ 2.05
$ 256 $ $ 3.1\times10^{-7} $ 2.95 $ 3.8\times10^{-5} $ 1.98
[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[6]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[7]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[8]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[9]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[10]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[11]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[12]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[13]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[14]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[15]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[16]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[17]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[18]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[19]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[20]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

2019 Impact Factor: 1.27

Article outline

Figures and Tables

[Back to Top]