
-
Previous Article
On an optimal control problem of time-fractional advection-diffusion equation
- DCDS-B Home
- This Issue
-
Next Article
On the approximation of fixed points for non-self mappings on metric spaces
Bifurcation of relative equilibria generated by a circular vortex path in a circular domain
1. | Departament d'Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, 17003 Girona, Spain |
2. | Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain |
We study the passive particle transport generated by a circular vortex path in a 2D ideal flow confined in a circular domain. Taking the strength and angular velocity of the vortex path as main parameters, the bifurcation scheme of relative equilibria is identified. For a perturbed path, an infinite number of orbits around the centers are persistent, giving rise to periodic solutions with zero winding number.
References:
[1] |
H. Aref,
Stirring by chaotic advection, J. Fluid Mech., 143 (1984), 1-21.
doi: 10.1017/S0022112084001233. |
[2] |
H. Aref, J. Roenby, M. A. Stremler and L. Tophøj,
Nonlinear excursions of particles in ideal 2D flows, Phys. D, 240 (2011), 199-207.
doi: 10.1016/j.physd.2010.08.007. |
[3] |
A. Boscaggin and P. J. Torres,
Periodic motions of fluid particles induced by a prescribed vortex path in a circular domain, Phys. D, 261 (2013), 81-84.
doi: 10.1016/j.physd.2013.07.004. |
[4] |
T. Carletti and A. Margheri,
Measuring the mixing efficiency in a simple model of stirring: Some analytical results and a quantitative study via frequency map analysis, J. Phys. A, 39 (2006), 299-312.
doi: 10.1088/0305-4470/39/2/002. |
[5] |
A. Fonda, M. Sabatini and F. Zanolin,
Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
|
[6] |
P. Franzese and L. Zannetti,
Advection by a point vortex in closed domains, European J. Mech. B Fluids, 12 (1993), 43-67.
|
[7] |
R. Ortega, V. Ortega and P. J. Torres,
Point-vortex stability under the influence of an external periodic flow, Nonlinearity, 31 (2018), 1849-1867.
doi: 10.1088/1361-6544/aaa5e2. |
[8] |
P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992.
doi: 10.1017/CBO9780511624063.![]() ![]() |
[9] |
P. J. Torres, Mathematical Models With Singularities, Atlantis Briefs in Differential Equations, 1, Atlantis Press, Paris, 2015.
doi: 10.2991/978-94-6239-106-2.![]() ![]() |
[10] |
S. Wiggins and J. M. Ottino,
Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), 937-970.
doi: 10.1098/rsta.2003.1356. |
show all references
References:
[1] |
H. Aref,
Stirring by chaotic advection, J. Fluid Mech., 143 (1984), 1-21.
doi: 10.1017/S0022112084001233. |
[2] |
H. Aref, J. Roenby, M. A. Stremler and L. Tophøj,
Nonlinear excursions of particles in ideal 2D flows, Phys. D, 240 (2011), 199-207.
doi: 10.1016/j.physd.2010.08.007. |
[3] |
A. Boscaggin and P. J. Torres,
Periodic motions of fluid particles induced by a prescribed vortex path in a circular domain, Phys. D, 261 (2013), 81-84.
doi: 10.1016/j.physd.2013.07.004. |
[4] |
T. Carletti and A. Margheri,
Measuring the mixing efficiency in a simple model of stirring: Some analytical results and a quantitative study via frequency map analysis, J. Phys. A, 39 (2006), 299-312.
doi: 10.1088/0305-4470/39/2/002. |
[5] |
A. Fonda, M. Sabatini and F. Zanolin,
Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
|
[6] |
P. Franzese and L. Zannetti,
Advection by a point vortex in closed domains, European J. Mech. B Fluids, 12 (1993), 43-67.
|
[7] |
R. Ortega, V. Ortega and P. J. Torres,
Point-vortex stability under the influence of an external periodic flow, Nonlinearity, 31 (2018), 1849-1867.
doi: 10.1088/1361-6544/aaa5e2. |
[8] |
P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992.
doi: 10.1017/CBO9780511624063.![]() ![]() |
[9] |
P. J. Torres, Mathematical Models With Singularities, Atlantis Briefs in Differential Equations, 1, Atlantis Press, Paris, 2015.
doi: 10.2991/978-94-6239-106-2.![]() ![]() |
[10] |
S. Wiggins and J. M. Ottino,
Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), 937-970.
doi: 10.1098/rsta.2003.1356. |


[1] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[2] |
Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365 |
[3] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[4] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[5] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[6] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[7] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[8] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[9] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[10] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[11] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[12] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[13] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[14] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[15] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[16] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[17] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[18] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[19] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[20] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]