February  2020, 25(2): 781-798. doi: 10.3934/dcdsb.2019267

Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations

1. 

Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China

2. 

Department of Mathematics, Texas A & M University-Kingsville, 700 University Blvd., TX 78363-8202, Kingsville, TX, USA

3. 

Distinguished University Professor of Mathematics, Florida Institute of Technology, Melbourne, FL 32901, USA

* Corresponding author: Ravi P Agarwal

Received  December 2018 Revised  April 2019 Published  November 2019

Fund Project: This work is supported by Youth Fund of NSFC (No. 11601470), Tian Yuan Fund of NSFC (No. 11526181), Dong Lu youth excellent teachers development program of Yunnan University (No. wx069051), IRTSTYN and Joint Key Project of Yunnan Provincial Science and Technology Department of Yunnan University (No. 2018FY001(-014)).

In this paper, we introduce the concepts of Bochner and Bohr almost automorphic functions on the semigroup induced by complete-closed time scales and their equivalence is proved. Particularly, when $ \Pi = \mathbb{R}^{+} $ (or $ \Pi = \mathbb{R}^{-} $), we can obtain the Bochner and Bohr almost automorphic functions on continuous semigroup, which is the new almost automorphic case on time scales compared with the literature [20] (W.A. Veech, Almost automorphic functions on groups, Am. J. Math., Vol. 87, No. 3 (1965), pp 719-751) since there may not exist inverse element in a semigroup. Moreover, when $ \Pi = h\mathbb{Z}^{+},\,h>0 $ (or $ \Pi = h\mathbb{Z}^{-},\,h>0 $), the corresponding automorphic functions on discrete semigroup can be obtained. Finally, we establish a theorem to guarantee the existence of Bochner (or Bohr) almost automorphic mild solutions of dynamic equations on semigroups induced by time scales.

Citation: Chao Wang, Ravi P Agarwal. Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 781-798. doi: 10.3934/dcdsb.2019267
References:
[1]

R. P. Agarwal and D. O'Regan, Some comments and notes on almost periodic functions and changing-periodic time scales, Electron. J. Math. Anal. Appl., 6 (2018), 125-136.   Google Scholar

[2]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1.  Google Scholar

[3]

S. Bochner, Curvature and Betti numbers in real and complex vector bundles, Univ. e Politec. Torino Rend. Sem. Mat., 15 (2019), 225-253.   Google Scholar

[4]

S. Bochner, Uniform convergence of monotone sequences of functions, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 582-585.  doi: 10.1073/pnas.47.4.582.  Google Scholar

[5]

S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039-2043.  doi: 10.1073/pnas.48.12.2039.  Google Scholar

[6]

M. Bohner and J. G. Mesquita, Almost periodic functions in quantum calculus, Electron. J. Differential Equations, 2018, 1–11.  Google Scholar

[7]

Y. K. Chang and T. W. Feng, Properties on measure pseudo almost automorphic functions and applications to fractional differential equations in Banach spaces, Electron. J. Differential Equations, 2018, 1–14.  Google Scholar

[8]

Y. K. Chang and S. Zheng, Weighted pseudo almost automorphic solutions to functional differential equations with infinite delay, Electron. J. Differential Equations, 2016, 1–19.  Google Scholar

[9]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham, 2013. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[10]

T. Diagana and G. M. N'Guérékata, Stepanov-like almost automorphic functions and applications to some semilinear equations, Appl. Anal., 86 (2007), 723-733.  doi: 10.1080/00036810701355018.  Google Scholar

[11]

H. S. DingT. J. Xiao and J. Liang, Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions, J. Math. Anal. Appl., 338 (2008), 141-151.  doi: 10.1016/j.jmaa.2007.05.014.  Google Scholar

[12]

H. S. Ding and S. M. Wan, Asymptotically almost automorphic solutions of differential equations with piecewise constant argument, Open Math., 15 (2017), 595-610.  doi: 10.1515/math-2017-0051.  Google Scholar

[13]

M. Kéré and G. M. N'Guérékata, Almost automorphic dynamic systems on time scales, PanAmer. Math. J., 28 (2018), 19-37.   Google Scholar

[14]

A. Milcé and J. C. Mado, Almost automorphic solutions of some semilinear dynamic equations on time scales, Int. J. Evol. Equ., 9 (2014), 217-229.   Google Scholar

[15]

G. Mophou, G. M. N'Guérékata and A. Milce, Almost automorphic functions of order n and applications to dynamic equations on time scales, Discrete Dyn. Nat. Soc., (2014), 1–13. doi: 10.1155/2014/410210.  Google Scholar

[16]

J. von Neumann, Almost periodic functions in a group, I, Trans. Amer. Math. Soc., 36 (1934), 445-492.  doi: 10.1090/S0002-9947-1934-1501752-3.  Google Scholar

[17]

G. M. N'Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York, 2005.  Google Scholar

[18]

G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4757-4482-8.  Google Scholar

[19]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.  doi: 10.1016/j.na.2007.02.012.  Google Scholar

[20]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[21]

C. Wang and R. P. Agarwal, Weighted piecewise pseudo almost automorphic functions with applications to abstract impulsive $\nabla$-dynamic equations on time scales, Adv. Difference Equ., 153 (2014), 1-29.  doi: 10.1186/1687-1847-2014-153.  Google Scholar

[22]

C. WangR. P. Agarwal and D. O'Regan, n0-order $\Delta$-almost periodic functions and dynamic equations, Appl. Anal., 97 (2018), 2626-2654.  doi: 10.1080/00036811.2017.1382689.  Google Scholar

[23]

C. WangR. P. Agarwal and D. O'Regan, Periodicity, almost periodicity for time scales and related functions, Nonauton. Dyn. Syst., 3 (2016), 24-41.  doi: 10.1515/msds-2016-0003.  Google Scholar

[24]

C. WangR. P. AgarwalD. O'ReganC. Wang and R. P. Agarwal, Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations, Adv. Difference Equ., 312 (2015), 1-9.  doi: 10.1186/s13662-015-0650-0.  Google Scholar

[25]

C. WangR. P Agarwal and D. O'Regan, A matched space for time scales and applications to the study on functions, Adv. Difference Equ., 305 (2017), 1-28.  doi: 10.1186/s13662-017-1366-0.  Google Scholar

[26]

C. WangR. P Agarwal and D. O'Regan, Weighted piecewise pseudo double-almost periodic solution for impulsive evolution equations, J. Nonlinear Sci. Appl., 10 (2017), 3863-3886.  doi: 10.22436/jnsa.010.07.41.  Google Scholar

[27]

C. WangR. P Agarwal and D. O'Regan, Π-semigroup for invariant under translations time scales and abstract weighted pseudo almost periodic functions with applications, Dynam. Systems Appl., 25 (2016), 1-28.   Google Scholar

[28]

C. Wang and R. P. Agarwal, Almost periodic solution for a new type of neutral impulsive stochastic Lasota-Wazewska timescale model, Appl. Math. Lett., 70 (2017), 58-65.  doi: 10.1016/j.aml.2017.03.009.  Google Scholar

[29]

T. XiaoJ. Liang and J. Zhang, Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces, Semigroup Forum, 76 (2008), 518-524.  doi: 10.1007/s00233-007-9011-y.  Google Scholar

[30]

M. Zaki, Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl., 101 (1974), 91-114.  doi: 10.1007/BF02417100.  Google Scholar

[31]

Z. M. Zheng and H. S. Ding, On completeness of the space of weighted pseudo almost automorphic functions, J. Funct. Anal., 268 (2015), 3211-3218.  doi: 10.1016/j.jfa.2015.02.012.  Google Scholar

show all references

References:
[1]

R. P. Agarwal and D. O'Regan, Some comments and notes on almost periodic functions and changing-periodic time scales, Electron. J. Math. Anal. Appl., 6 (2018), 125-136.   Google Scholar

[2]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser Boston, Inc., Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1.  Google Scholar

[3]

S. Bochner, Curvature and Betti numbers in real and complex vector bundles, Univ. e Politec. Torino Rend. Sem. Mat., 15 (2019), 225-253.   Google Scholar

[4]

S. Bochner, Uniform convergence of monotone sequences of functions, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 582-585.  doi: 10.1073/pnas.47.4.582.  Google Scholar

[5]

S. Bochner, A new approach to almost periodicity, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 2039-2043.  doi: 10.1073/pnas.48.12.2039.  Google Scholar

[6]

M. Bohner and J. G. Mesquita, Almost periodic functions in quantum calculus, Electron. J. Differential Equations, 2018, 1–11.  Google Scholar

[7]

Y. K. Chang and T. W. Feng, Properties on measure pseudo almost automorphic functions and applications to fractional differential equations in Banach spaces, Electron. J. Differential Equations, 2018, 1–14.  Google Scholar

[8]

Y. K. Chang and S. Zheng, Weighted pseudo almost automorphic solutions to functional differential equations with infinite delay, Electron. J. Differential Equations, 2016, 1–19.  Google Scholar

[9]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham, 2013. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[10]

T. Diagana and G. M. N'Guérékata, Stepanov-like almost automorphic functions and applications to some semilinear equations, Appl. Anal., 86 (2007), 723-733.  doi: 10.1080/00036810701355018.  Google Scholar

[11]

H. S. DingT. J. Xiao and J. Liang, Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions, J. Math. Anal. Appl., 338 (2008), 141-151.  doi: 10.1016/j.jmaa.2007.05.014.  Google Scholar

[12]

H. S. Ding and S. M. Wan, Asymptotically almost automorphic solutions of differential equations with piecewise constant argument, Open Math., 15 (2017), 595-610.  doi: 10.1515/math-2017-0051.  Google Scholar

[13]

M. Kéré and G. M. N'Guérékata, Almost automorphic dynamic systems on time scales, PanAmer. Math. J., 28 (2018), 19-37.   Google Scholar

[14]

A. Milcé and J. C. Mado, Almost automorphic solutions of some semilinear dynamic equations on time scales, Int. J. Evol. Equ., 9 (2014), 217-229.   Google Scholar

[15]

G. Mophou, G. M. N'Guérékata and A. Milce, Almost automorphic functions of order n and applications to dynamic equations on time scales, Discrete Dyn. Nat. Soc., (2014), 1–13. doi: 10.1155/2014/410210.  Google Scholar

[16]

J. von Neumann, Almost periodic functions in a group, I, Trans. Amer. Math. Soc., 36 (1934), 445-492.  doi: 10.1090/S0002-9947-1934-1501752-3.  Google Scholar

[17]

G. M. N'Guérékata, Topics in Almost Automorphy, Springer-Verlag, New York, 2005.  Google Scholar

[18]

G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4757-4482-8.  Google Scholar

[19]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.  doi: 10.1016/j.na.2007.02.012.  Google Scholar

[20]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[21]

C. Wang and R. P. Agarwal, Weighted piecewise pseudo almost automorphic functions with applications to abstract impulsive $\nabla$-dynamic equations on time scales, Adv. Difference Equ., 153 (2014), 1-29.  doi: 10.1186/1687-1847-2014-153.  Google Scholar

[22]

C. WangR. P. Agarwal and D. O'Regan, n0-order $\Delta$-almost periodic functions and dynamic equations, Appl. Anal., 97 (2018), 2626-2654.  doi: 10.1080/00036811.2017.1382689.  Google Scholar

[23]

C. WangR. P. Agarwal and D. O'Regan, Periodicity, almost periodicity for time scales and related functions, Nonauton. Dyn. Syst., 3 (2016), 24-41.  doi: 10.1515/msds-2016-0003.  Google Scholar

[24]

C. WangR. P. AgarwalD. O'ReganC. Wang and R. P. Agarwal, Relatively dense sets, corrected uniformly almost periodic functions on time scales, and generalizations, Adv. Difference Equ., 312 (2015), 1-9.  doi: 10.1186/s13662-015-0650-0.  Google Scholar

[25]

C. WangR. P Agarwal and D. O'Regan, A matched space for time scales and applications to the study on functions, Adv. Difference Equ., 305 (2017), 1-28.  doi: 10.1186/s13662-017-1366-0.  Google Scholar

[26]

C. WangR. P Agarwal and D. O'Regan, Weighted piecewise pseudo double-almost periodic solution for impulsive evolution equations, J. Nonlinear Sci. Appl., 10 (2017), 3863-3886.  doi: 10.22436/jnsa.010.07.41.  Google Scholar

[27]

C. WangR. P Agarwal and D. O'Regan, Π-semigroup for invariant under translations time scales and abstract weighted pseudo almost periodic functions with applications, Dynam. Systems Appl., 25 (2016), 1-28.   Google Scholar

[28]

C. Wang and R. P. Agarwal, Almost periodic solution for a new type of neutral impulsive stochastic Lasota-Wazewska timescale model, Appl. Math. Lett., 70 (2017), 58-65.  doi: 10.1016/j.aml.2017.03.009.  Google Scholar

[29]

T. XiaoJ. Liang and J. Zhang, Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces, Semigroup Forum, 76 (2008), 518-524.  doi: 10.1007/s00233-007-9011-y.  Google Scholar

[30]

M. Zaki, Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl., 101 (1974), 91-114.  doi: 10.1007/BF02417100.  Google Scholar

[31]

Z. M. Zheng and H. S. Ding, On completeness of the space of weighted pseudo almost automorphic functions, J. Funct. Anal., 268 (2015), 3211-3218.  doi: 10.1016/j.jfa.2015.02.012.  Google Scholar

[1]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[4]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[5]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[8]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[9]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[10]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[11]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[12]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[17]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[18]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[19]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[20]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (233)
  • HTML views (152)
  • Cited by (2)

Other articles
by authors

[Back to Top]