In this paper, a reaction-diffusion model with a cyclic structure is studied, which includes the SIS disease-transmission model and the nutrient-phytoplankton model. The minimal wave speed $ c^* $ of traveling wave solutions is given. The existence of traveling semi-fronts with $ c>c^* $ is proved by Schauder's fixed-point theorem. The traveling semi-fronts are shown to be bounded by rescaling method and comparison principle. The existence of traveling semi-front with $ c = c^* $ is obtained by limit arguments. Finally, the traveling semi-fronts are shown to connect to the positive equilibrium by a Lyapunov function.
Citation: |
[1] |
A. Arapostathis, M. K. Ghosh and S. I. Marcus, Harnack's inequality for cooperative weakly coupled elliptic systems, Comm. Partial Differential Equations, 24 (1999), 1555-1571.
doi: 10.1080/03605309908821475.![]() ![]() ![]() |
[2] |
Z. G. Bai and S.-L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 263 (2015), 221-232.
doi: 10.1016/j.amc.2015.04.048.![]() ![]() ![]() |
[3] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.
doi: 10.1088/0951-7715/22/12/002.![]() ![]() ![]() |
[4] |
N. F. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2003.
doi: 10.1007/978-1-4471-0049-2.![]() ![]() ![]() |
[5] |
C. J. Dai, M. Zhao and H. G. Yu, Dynamics induced by delay in a nutrient-phytoplankton model with diffusion, Ecological Complexity, 26 (2016), 29-36.
doi: 10.1016/j.ecocom.2016.03.001.![]() ![]() |
[6] |
D. T. Dimitrov and H. V. Kojouharov, Analysis and numerical simulation of phytoplankton-nutrient systems with nutrient loss, Math. Comput. Simulation, 70 (2005), 33-43.
doi: 10.1016/j.matcom.2005.03.001.![]() ![]() ![]() |
[7] |
W. Ding, W. Z. Huang and S. Kansakar, Traveling wave solutions for a diffusive SIS epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1291-1304.
doi: 10.3934/dcdsb.2013.18.1291.![]() ![]() ![]() |
[8] |
A. Ducrot, Spatial propagation for a two component reaction-diffusion system arising in population dynamics, J. Differential Equations, 260 (2016), 8316-8357.
doi: 10.1016/j.jde.2016.02.023.![]() ![]() ![]() |
[9] |
A. Ducrot, M. Langlais and P. Magal, Qualitative analysis and travelling wave solutions for the SI model with vertical transmission, Commun. Pure Appl. Anal., 11 (2012), 97-113.
doi: 10.3934/cpaa.2012.11.97.![]() ![]() ![]() |
[10] |
S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.
doi: 10.1088/0951-7715/28/12/4389.![]() ![]() ![]() |
[11] |
L. Girardin, Non-cooperative Fisher-KPP systems: Traveling waves and long-time behavior, Nonlinearity, 31 (2018), 108-164.
doi: 10.1088/1361-6544/aa8ca7.![]() ![]() ![]() |
[12] |
F. M. Hilker and M. A. Lewis, Predator-prey systems in streams and rivers, Theor. Ecol., 3 (2010), 175-193.
doi: 10.1007/s12080-009-0062-4.![]() ![]() |
[13] |
C. H. Hsu and T. S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121.![]() ![]() ![]() |
[14] |
W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.
doi: 10.1007/s10884-012-9255-4.![]() ![]() ![]() |
[15] |
W. Z. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224.
doi: 10.1016/j.jde.2015.09.060.![]() ![]() ![]() |
[16] |
A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett., 15 (2002), 955-960.
doi: 10.1016/S0893-9659(02)00069-1.![]() ![]() ![]() |
[17] |
K.-Y. Lam, X. Y. Wang and T. R. Zhang, Traveling waves for a class of diffusive disease-transmission models with network structures, SIAM J. Math. Anal., 50 (2018), 5719-5748.
doi: 10.1137/17M1144258.![]() ![]() ![]() |
[18] |
H. Li, R. Peng and F.-B. Wang, Varying total population enhances disease persistence: Qualitative analysis on a diffusive SIS epidemic model, J. Differential Equations, 262 (2017), 885-913.
doi: 10.1016/j.jde.2016.09.044.![]() ![]() ![]() |
[19] |
Y. Li, W.-T. Li and Y.-R. Yang, Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model, J. Math. Phys., 57 (2016), 041504, 28 pp.
doi: 10.1063/1.4947106.![]() ![]() ![]() |
[20] |
Z. H. Ma and R. Yuan, Traveling wave solutions of a nonlocal dispersal SIRS model with spatio-temporal delay, International J. Biomathematics, 10 (2017), 1750071, 23 pp.
doi: 10.1142/S1793524517500711.![]() ![]() ![]() |
[21] |
A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140. American Mathematical Society, Providence, RI, 1994.
![]() ![]() |
[22] |
T. R. Zhang and Y. Jin, Traveling waves for a reaction-diffusion-advection predator-prey model, Nonlinear Anal. Real World Appl., 36 (2017), 203-232.
doi: 10.1016/j.nonrwa.2017.01.011.![]() ![]() ![]() |
[23] |
T. R. Zhang, W. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.
doi: 10.1016/j.jde.2015.10.017.![]() ![]() ![]() |
[24] |
L. Zhao and Z.-C. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.
doi: 10.1093/imamat/hxw033.![]() ![]() ![]() |
[25] |
L. Zhao, Z.-C. Wang and S. G. Ruan, Traveling wave solutions in a two-group epidemic model with latent period, Nonlinearity, 30 (2017), 1287-1325.
doi: 10.1088/1361-6544/aa59ae.![]() ![]() ![]() |