[1]
|
M. R. Atkinson, M. A. Savageau, J. T. Myers and A. J. Ninfa, Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli, Cell, 113 (2003), 597-607.
doi: 10.1016/S0092-8674(03)00346-5.
|
[2]
|
M. Baron, N. Buchler, C. Cooper, M. Farnitano, C. Gersbach, C. Kim, H. S. Kim, A. Reid and J. Zhu, Designing Synthtic Gene Networks Using Artificial Trnscription Factors in Yeast, Available from: http://2013.igem.org/Team:Duke.
|
[3]
|
I. Bendixson, Sur lés courbes définies par des équations différentielles, Acta Math., 24 (1901), 1-88.
doi: 10.1007/BF02403068.
|
[4]
|
J. Carr, Applications of Center Manifold Theory, Applied Mathematical Sciences, 35. Springer-Verlag, New York-Berlin, 1981.
|
[5]
|
S. N. Chow, C. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511665639.
|
[6]
|
B. P. Cormack, R. H. Valdivia and S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP), Gene, 173 (1996), 33-38.
doi: 10.1016/0378-1119(95)00685-0.
|
[7]
|
J. E. Ferrell, Self-perpetuating states in signal transduction: Positive feedback, double-negative feedback and bistability, Curr. Opin. Cell Biol., 14 (2002), 140-148.
doi: 10.1016/S0955-0674(02)00314-9.
|
[8]
|
J. E. Ferrell and S. H. Ha, Ultrasensitivity part Ⅲ: Cascades, bistable switches, and oscillators, Trends Biochem. Sci., 12 (2014), 612-618.
doi: 10.1016/j.tibs.2014.10.002.
|
[9]
|
B. Gao and W. Zhang, Equilibria and their bifurcations in a recurrent neural network involving iterates of a transcendental function, IEEE Trans. Neural Network, 19 (2008), 782-794.
doi: 10.1109/TNN.2007.912321.
|
[10]
|
T. S. Gardner, C. R. Cantor and J. J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 403 (2000), 339-342.
doi: 10.1038/35002131.
|
[11]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcation of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[12]
|
J. Hasty, J. Pradiness, M. Dolnik and J. J. Collins, Noise-based switches and amplifiers for gene expression, Proc. Natl Acad. Sci. USA, 97 (2000), 2075-2080.
doi: 10.1073/pnas.040411297.
|
[13]
|
X. R. Hou, R. Yan and W. N. Zhang, Bifurcations of a polynomial differentialsystem of degree $n$ in biochemical reactions, Comput. Math. Appl., 43 (2002), 1407-1423.
doi: 10.1016/S0898-1221(02)00108-6.
|
[14]
|
K. C. Keiler, P. R. H. Waller and R. T. Sauer, Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA, Science, 271 (1996), 990-993.
doi: 10.1126/science.271.5251.990.
|
[15]
|
L. Edelstein-Keshet, Mathematical Models in Biology, Random House, Inc., New York, 1988.
|
[16]
|
A. S. Khalil and J. J. Collins, Synthetic biology: Applications come of age, Nat. Rev. Genet., 11 (2010), 367-379.
doi: 10.1038/nrg2775.
|
[17]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition. Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.
|
[18]
|
J. E. Lisman, A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase, Proc. Natl. Acad. Sci. USA, 82 (1985), 3055-3057.
doi: 10.1073/pnas.82.9.3055.
|
[19]
|
R. Lutz and H. Bujard, Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements, Nucleic Acids Res., 25 (1997), 1203-1210.
doi: 10.1093/nar/25.6.1203.
|
[20]
|
H. Maamar and D. Dubnau, Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop, Mol. Microbiol., 56 (2005), 615-624.
doi: 10.1111/j.1365-2958.2005.04592.x.
|
[21]
|
T. S. Moon, E. J. Clarke, E. S. Groban, A. Tamsir, R. M. Clark, M. Eames, T. Kortemme and C. A. Voigt, Construction of a genetic multiplexer to toggle between chemosensory pathways in Escherichia coli, J. Mol.Biol., 406 (2011), 215-227.
doi: 10.1016/j.jmb.2010.12.019.
|
[22]
|
F. Mosconi, T. Julou, N. Desprat, D. K. Sinha, J. F. Allemand, C. Vincent and D. Bensimon, Some nonlinear challenges in biology, Nonlinearity, 21 (2008), T131-T147.
doi: 10.1088/0951-7715/21/8/T03.
|
[23]
|
E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman and A. van Oudenaarden, Multistability in the lactose utilization networks of Escherichia coli, Nature, 427 (2004), 737-740.
doi: 10.1038/nature02298.
|
[24]
|
L. Perko, Diffenrential Equations and Dynamical Systems, Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991.
doi: 10.1007/978-1-4684-0392-3.
|
[25]
|
S. I. Rubinow, Introduction to Mathematical Biology, Dover Publications, Inc., Mineola, NY, 2002.
|
[26]
|
S. Semsey, L. Jauffred, Z. Csiszovszki, J. Erdőssy, V. Stéger, S. Hansen and S. Krishna, The effect of LacI autoregulation on the performance of the lactose utilization system in Escherichia coli, Nucleic Acids Res., 41 (2013), 6381-6390.
doi: 10.1093/nar/gkt351.
|
[27]
|
P. Siuti, J. Yazbek and T. K. Lu, Synthetic circuits integrating logic and memory in living cells, Nat. Biotechnol., 31 (2013), 448-452.
doi: 10.1038/nbt.2510.
|
[28]
|
Y. L. Tang, D. Q. Huang and W. N. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011), 876-898.
doi: 10.1093/imamat/hxr005.
|
[29]
|
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4684-0313-8.
|
[30]
|
J. J. Y. Teo, S. S. Woo and R. Sarpeshkar, Synthetic biology: A unifying view and review using analog circuits, IEEE Trans. Biomed. Circuits Syst., 9 (2015), 453-474.
doi: 10.1109/TBCAS.2015.2461446.
|
[31]
|
A. van Oudenaarden, Systems Biology: Modeling Biological Networks, 7.32/7.81J/8.591J, 2009. Available from: http://web.mit.edu/biophysics/sbio/.
|
[32]
|
W. Xiong and J. E. Ferrell Jr., A positive-feedback-based bistable 'memory module' that governs a cell fate decision, Nature, 426 (2003), 460-465.
doi: 10.1038/nature02089.
|
[33]
|
D. B. Xiu, Efficient collocational approach for parametric uncertainty analysis, Commun. Comput. Phys., 2 (2007), 293-309.
|
[34]
|
Z. F. Zhang, T. R. Ding, W. Z. Huang and Z. X. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101. American Mathematical Society, Providence, RI, 1992.
|