\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of a nonlinear necrotic tumor model with a periodic external nutrient supply

  • * Corresponding author: Junde Wu

    * Corresponding author: Junde Wu 

The second author is supported by the National Natural Science Foundation of China under grant 11301474 and the Natural Science Foundation of Guangdong Province under grant 2018A030313536

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study a nonlinear free boundary problem for the growth of radially symmetric tumor with a necrotic core. The proliferation of tumor cells depends on the concentration of nutrient which satisfies a diffusion equation within tumor and is periodically supplied by external tissues. The tumor outer surface and the inner interface of the necrotic core are both free boundaries. We give a sufficient and necessary condition for the existence and uniqueness of positive periodic solution, and show it is globally asymptotically stable under radial perturbations. Our analysis implies that tumor growth may finally synchronize the periodic external nutrient supply.

    Mathematics Subject Classification: Primary: 35B10, 35B35, 35R35; Secondary: 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. Bai and S. H. Xu, Qualitative analysis of a mathematical model for tumor growth with a periodic supply of external nutrients, Pac. J. Appl. Math., 5 (2013), 217-223. 
    [2] H. BuenoG. Ercole and A. Zumpano, Stationary solutions of a model for the growth of tumors and a connection between the nonnecrotic and necrotic phases, SIAM J. Appl. Math., 68 (2008), 1004-1025.  doi: 10.1137/060654815.
    [3] H. M. Byrne and M. A. J. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216.  doi: 10.1016/0025-5564(96)00023-5.
    [4] S. B. Cui, Global existence of solutions for a free boundary problem modeling the growth of necrotic tumors, Interfaces and Free Boundaries, 7 (2005), 147-159.  doi: 10.4171/IFB/118.
    [5] S. B. Cui, Formation of necrotic cores in the growth of tumors: Analytic results, Acta Math. Sci. Ser. B (Engl. Ed.), 26 (2006), 781-796.  doi: 10.1016/S0252-9602(06)60104-5.
    [6] S. B. Cui and A. Friedman, Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl., 255 (2001), 636-677.  doi: 10.1006/jmaa.2000.7306.
    [7] J. Escher and A.-V. Matioc, Radially symmetric growth of nonnecrotic tumors, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 1-20.  doi: 10.1007/s00030-009-0037-6.
    [8] D. B. ForgerBiological clocks, Rhythms, and Oscillations. The theory of biological timekeeping, MIT Press, Cambridge, MA, 2017. 
    [9] A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284.  doi: 10.1007/s002850050149.
    [10] A. Friedman and B. Hu, Stability and instability of Liapunov-Schmidt and Hopf bifurcation for a free boundary problem arising in a tumor model, Trans. Amer. Math. Soc., 360 (2008), 5291-5342.  doi: 10.1090/S0002-9947-08-04468-1.
    [11] H. P. Greenspan, Models for the growth of a solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340.  doi: 10.1002/sapm1972514317.
    [12] Y. D. HuangZ. C. Zhang and B. Hu, Linear stability for a free boundary tumor model with a periodic supply of external nutrients, Math. Meth. Appl. Sci., 42 (2019), 1039-1054.  doi: 10.1002/mma.5412.
    [13] J. S. Lowengrub, H. B. Frieboes, F. Jin, Y.-L. Chuang, X. Li, P. Macklin, S. M. Wise and V. Cristini, Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2010), R1–R91. doi: 10.1088/0951-7715/23/1/R01.
    [14] J. D. Wu, Stationary solutions of a free boundary problem modeling the growth of tumors with Gibbs-Thomson relation, J. Differential Equations, 260 (2016), 5875-5893.  doi: 10.1016/j.jde.2015.12.023.
    [15] J. D. Wu, Analysis of a mathematical model for tumor growth with Gibbs-Thomson relation, J. Math. Anal. Appl., 450 (2017), 532-543.  doi: 10.1016/j.jmaa.2017.01.051.
    [16] J. D. Wu, Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Conti. Dyn. Syst., 39 (2019), 3399-3411.  doi: 10.3934/dcds.2019140.
    [17] J. D. Wu and C. Wang, Radially symmetric growth of necrotic tumors and connection with nonnecrotic tumors, Nonlinear Anal. Real World Appl., 50 (2019), 25-33.  doi: 10.1016/j.nonrwa.2019.04.012.
    [18] J. D. Wu and F. J. Zhou, Asymptotic behavior of solutions of a free boundary problem modeling tumor spheroid with Gibbs-Thomson relation, J. Differential Equations, 262 (2017), 4907-4930.  doi: 10.1016/j.jde.2017.01.012.
    [19] Y. H. Zhuang and S. B. Cui, Analysis of a free boundary problem modeling the growth of multicell spheroids with angiogenesis, J. Differential Equations, 265 (2018), 620-644.  doi: 10.1016/j.jde.2018.03.005.
  • 加载中
SHARE

Article Metrics

HTML views(429) PDF downloads(332) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return