[1]
|
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1964.
|
[2]
|
S. A. Avdonin and S. A. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, 1995.
|
[3]
|
F. L. Bauer and C. T. Fike, Norms and exclusion theorems, Numer. Math., 2 (1960), 137-141.
doi: 10.1007/BF01386217.
|
[4]
|
A. Benabdallah, P. Gaitan and J. L. Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., 46 (2007), 1849-1881.
doi: 10.1137/050640047.
|
[5]
|
M. Choulli and M. Yamamoto, Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation, Nonlinear Anal., 69 (2008), 3983-3998.
doi: 10.1016/j.na.2007.10.031.
|
[6]
|
J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type, Proc. Cambridge Philos. Soc., 43 (1947), 50-67.
doi: 10.1017/S0305004100023197.
|
[7]
|
F. R. Gantmacher, The Theory of Matrices: Volume One, Chelsea Publishing Company, New York, 1959.
|
[8]
|
G. H. Golub, M. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.
doi: 10.1080/00401706.1979.10489751.
|
[9]
|
B. Z. Guo and J. D. Chang, Simultaneous identifiability of coefficients, initial state and source for string and beam equations via boundary control and observation, Proc. 8th Asian Control Conference, Kaohsiung, 2011,365–370.
|
[10]
|
S. Gutman and J. H. Ha, Identifiability of piecewise constant conductivity in a heat conduction process, SIAM J. Control Optim., 46 (2007), 694-713.
doi: 10.1137/060657364.
|
[11]
|
P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, Philadelphia, 2010.
doi: 10.1137/1.9780898718836.
|
[12]
|
Y. B. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process., 38 (1990), 814-824.
doi: 10.1109/29.56027.
|
[13]
|
V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 1998.
doi: 10.1007/978-1-4899-0030-2.
|
[14]
|
S. Kitamura and S. Nakagiri, Identifiability of spatially-varying and constant parameters in distributed systems of parabolic type, SIAM J. Control Optim., 15 (1977), 785-802.
doi: 10.1137/0315050.
|
[15]
|
R. Murayama, The Gel'fand-Levitan theory and certain inverse problems for the parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28 (1981), 317-330.
|
[16]
|
S. Nakagiri, Identifiability of linear systems in Hilbert spaces, SIAM J. Control Optim., 21 (1983), 501-530.
doi: 10.1137/0321031.
|
[17]
|
Y. Orlov and J. Bentsman, Adaptive distributed parameter systems identification with enforceable identifiability conditions and reduced-order spatial differentiation, IEEE Trans. Automat. Control, 45 (2000), 203-216.
doi: 10.1109/9.839944.
|
[18]
|
A. Pierce, Unique identification of eigenvalues and coefficients in a parabolic equation, SIAM J. Control Optim., 17 (1979), 494-499.
doi: 10.1137/0317035.
|
[19]
|
K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers, Automatica, 46 (2010), 1616-1625.
doi: 10.1016/j.automatica.2010.06.032.
|
[20]
|
S. Saks and A. Zygmund, Analytic Functions, 2$^nd$ edition, Wydawnietwo Naukowe, Warsaw, 1965.
|
[21]
|
A. Smyshlyaev, Y. Orlov and M. Krstic, Adaptive identification of two unstable PDEs with boundary sensing and actuation, Internat. J. Adapt. Control Signal Process, 23 (2009), 131-149.
doi: 10.1002/acs.1056.
|
[22]
|
G. W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev., 19 (1977), 634-662.
doi: 10.1137/1019104.
|
[23]
|
T. Suzuki and R. Murayama, A uniqueness theorem in an identification problem for coefficients of parabolic equations, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 259-263.
doi: 10.3792/pjaa.56.259.
|
[24]
|
T. Suzuki, Uniqueness and nonuniqueness in an inverse problem for the parabolic equation, J. Differential Equations, 47 (1983), 296-316.
doi: 10.1016/0022-0396(83)90038-4.
|
[25]
|
E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986.
|
[26]
|
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9.
|
[27]
|
Y. B. Wang, J. Cheng, J. Nakagawa and M. Yamamoto, A numerical method for solving the inverse heat conduction problem without initial value, Inverse Probl. Sci. Eng., 18 (2010), 655-671.
doi: 10.1080/17415971003698615.
|
[28]
|
P. A. Wedin, Perturbation theory for pseudo-inverses, BIT, 13 (1973), 217-232.
doi: 10.1007/BF01933494.
|
[29]
|
G. Q. Xu, State reconstruction of a distributed parameter system with exact observability, J. Math. Anal. Appl., 409 (2014), 168-179.
doi: 10.1016/j.jmaa.2013.06.014.
|
[30]
|
M. Yamamoto and J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17 (2001), 1181-1202.
doi: 10.1088/0266-5611/17/4/340.
|
[31]
|
G. H. Zheng and T. Wei, Recovering the source and initial value simultaneously in a parabolic equation, Inverse Problems, 30 (2014), 065013, 35pp.
doi: 10.1088/0266-5611/30/6/065013.
|