-
Previous Article
Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy
- DCDS-B Home
- This Issue
-
Next Article
On the stability and transition of the Cahn-Hilliard/Allen-Cahn system
The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem
School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China |
In this paper we study the asymptotic behaviour of the first eigenvalues $ \lambda^{1}_{p_{n}(\cdot)} $ and the corresponding eigenfunctions $ u_{n} $ of (1) as $ p_{n}(x)\rightarrow \infty $. Under adequate hypotheses on the sequence $ p_{n} $, we prove that $ \lambda^{1}_{p_{n}(\cdot)} $ converges to 1 and the positive first eigenfunctions $ u_{n} $, normalized by $ |u_{n}|_{L^{p_{n}(x)}(\partial \Omega)} = 1 $, converge, up to subsequences, to $ u_{\infty} $ uniformly in $ C^{\alpha}(\overline{\Omega}) $, for some $ 0<\alpha<1 $, where $ u_{\infty} $ is a nontrivial viscosity solution of a problem involving the $ \infty $-Laplacian subject to appropriate boundary conditions.
References:
[1] |
F. Abdullayev and M. Bocea,
The Robin eigenvalue problem for the $p(x)$-Laplacian as $p\rightarrow\infty$, Nonlinear Anal., 91 (2013), 32-45.
doi: 10.1016/j.na.2013.06.005. |
[2] |
E. Acerbi and G. Mingione,
Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.
doi: 10.1007/s002050100117. |
[3] |
G. Barles,
Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 (1993), 90-106.
doi: 10.1006/jdeq.1993.1100. |
[4] |
M. Bocea and M. Mihǎilescu,
The principal frequency of $\triangle_{\infty}$ as a limit of Rayleigh quotients involving Luxemburg norms, Bull. Sci.math., 138 (2014), 236-252.
doi: 10.1016/j.bulsci.2013.06.001. |
[5] |
M. Bocea and M. Mihǎilescu,
$\Gamma$-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73 (2010), 110-121.
doi: 10.1016/j.na.2010.03.004. |
[6] |
Y. M. Chen, S. Levine and M. Rao,
Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
doi: 10.1137/050624522. |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second-order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
S. G. Deng,
Eigenvalues of the $p(x)$-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.
doi: 10.1016/j.jmaa.2007.07.028. |
[9] |
L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8. |
[10] |
D. E. Edmunds and J. Rákosník,
Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
doi: 10.4064/sm-143-3-267-293. |
[11] |
X. L. Fan and X. Han,
Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.
doi: 10.1016/j.na.2004.07.009. |
[12] |
X. L. Fan, J. S. Shen and D. Zhao,
Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.
doi: 10.1006/jmaa.2001.7618. |
[13] |
X. L. Fan and D. Zhao,
On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[14] |
X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282. (Translation of Chinese Ann. Math. Ser. A, 24 (2003) 495–500.) |
[15] |
G. Franzina and P. Lindqvist,
An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.
doi: 10.1016/j.na.2013.02.011. |
[16] |
N. Fukagai, M. Ito and K. Narukawa,
Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^{\infty}$ inequality of the Poincaré type, Differ. Integral Equations, 12 (1999), 183-206.
|
[17] |
P. Harjulehto, P. Hästö, Ú. Lê and M. Nuortio,
Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.
doi: 10.1016/j.na.2010.02.033. |
[18] |
P. Juutinen, P. Lindqvist and J. Manfredi,
The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[19] |
O. Kováčik and J. Rákosník,
On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J, 41 (1991), 592-618.
|
[20] |
A. Lê,
On the first engenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations, 2006 (2006), 1-9.
|
[21] |
P. Lindqvist, Notes on the $p$-Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006. |
[22] |
P. Lindqvist and T. Lukkari,
A curious equation involving the $\infty$-Laplacian, Adv. Calc. Var., 3 (2010), 409-421.
|
[23] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano,
Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.
doi: 10.1016/j.na.2009.06.054. |
[24] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano,
$p(x)$-harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.
doi: 10.1016/j.anihpc.2009.09.008. |
[25] |
J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983.
doi: 10.1007/BFb0072210. |
[26] |
M. Pérez-Llanos and J. D. Rossi, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Nonlinear Elliptic Partial Differential Equations, 187–201, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011.
doi: 10.1090/conm/540/10665. |
[27] |
M. Pérez-Llanos and J. D. Rossi,
The behaviour of the $p(x)$-Laplacian eigenvalue problem as $p(x)\rightarrow \infty$, J. Math. Anal. Appl., 363 (2010), 502-511.
doi: 10.1016/j.jmaa.2009.09.044. |
[28] |
M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029. |
[29] |
V. V. Zhikov,
Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29 (1987), 33-66.
|
[30] |
V. V. Zhikov,
On Lavrentiev$'$s phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.
|
show all references
References:
[1] |
F. Abdullayev and M. Bocea,
The Robin eigenvalue problem for the $p(x)$-Laplacian as $p\rightarrow\infty$, Nonlinear Anal., 91 (2013), 32-45.
doi: 10.1016/j.na.2013.06.005. |
[2] |
E. Acerbi and G. Mingione,
Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.
doi: 10.1007/s002050100117. |
[3] |
G. Barles,
Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 (1993), 90-106.
doi: 10.1006/jdeq.1993.1100. |
[4] |
M. Bocea and M. Mihǎilescu,
The principal frequency of $\triangle_{\infty}$ as a limit of Rayleigh quotients involving Luxemburg norms, Bull. Sci.math., 138 (2014), 236-252.
doi: 10.1016/j.bulsci.2013.06.001. |
[5] |
M. Bocea and M. Mihǎilescu,
$\Gamma$-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73 (2010), 110-121.
doi: 10.1016/j.na.2010.03.004. |
[6] |
Y. M. Chen, S. Levine and M. Rao,
Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
doi: 10.1137/050624522. |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions,
User's guide to viscosity solutions of second-order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[8] |
S. G. Deng,
Eigenvalues of the $p(x)$-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.
doi: 10.1016/j.jmaa.2007.07.028. |
[9] |
L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8. |
[10] |
D. E. Edmunds and J. Rákosník,
Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
doi: 10.4064/sm-143-3-267-293. |
[11] |
X. L. Fan and X. Han,
Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.
doi: 10.1016/j.na.2004.07.009. |
[12] |
X. L. Fan, J. S. Shen and D. Zhao,
Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.
doi: 10.1006/jmaa.2001.7618. |
[13] |
X. L. Fan and D. Zhao,
On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617. |
[14] |
X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282. (Translation of Chinese Ann. Math. Ser. A, 24 (2003) 495–500.) |
[15] |
G. Franzina and P. Lindqvist,
An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.
doi: 10.1016/j.na.2013.02.011. |
[16] |
N. Fukagai, M. Ito and K. Narukawa,
Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^{\infty}$ inequality of the Poincaré type, Differ. Integral Equations, 12 (1999), 183-206.
|
[17] |
P. Harjulehto, P. Hästö, Ú. Lê and M. Nuortio,
Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.
doi: 10.1016/j.na.2010.02.033. |
[18] |
P. Juutinen, P. Lindqvist and J. Manfredi,
The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157. |
[19] |
O. Kováčik and J. Rákosník,
On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J, 41 (1991), 592-618.
|
[20] |
A. Lê,
On the first engenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations, 2006 (2006), 1-9.
|
[21] |
P. Lindqvist, Notes on the $p$-Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006. |
[22] |
P. Lindqvist and T. Lukkari,
A curious equation involving the $\infty$-Laplacian, Adv. Calc. Var., 3 (2010), 409-421.
|
[23] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano,
Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.
doi: 10.1016/j.na.2009.06.054. |
[24] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano,
$p(x)$-harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.
doi: 10.1016/j.anihpc.2009.09.008. |
[25] |
J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983.
doi: 10.1007/BFb0072210. |
[26] |
M. Pérez-Llanos and J. D. Rossi, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Nonlinear Elliptic Partial Differential Equations, 187–201, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011.
doi: 10.1090/conm/540/10665. |
[27] |
M. Pérez-Llanos and J. D. Rossi,
The behaviour of the $p(x)$-Laplacian eigenvalue problem as $p(x)\rightarrow \infty$, J. Math. Anal. Appl., 363 (2010), 502-511.
doi: 10.1016/j.jmaa.2009.09.044. |
[28] |
M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029. |
[29] |
V. V. Zhikov,
Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29 (1987), 33-66.
|
[30] |
V. V. Zhikov,
On Lavrentiev$'$s phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.
|
[1] |
Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425 |
[2] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029 |
[3] |
Mihai Mihăilescu, Julio D. Rossi. Monotonicity with respect to $ p $ of the First Nontrivial Eigenvalue of the $ p $-Laplacian with Homogeneous Neumann Boundary Conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4363-4371. doi: 10.3934/cpaa.2020198 |
[4] |
Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021 |
[5] |
Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 |
[6] |
Chengxin Du, Changchun Liu. Time periodic solution to a two-species chemotaxis-Stokes system with $ p $-Laplacian diffusion. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4321-4345. doi: 10.3934/cpaa.2021162 |
[7] |
Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020133 |
[8] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[9] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[10] |
Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199 |
[11] |
Phuong Le. Symmetry of singular solutions for a weighted Choquard equation involving the fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (1) : 527-539. doi: 10.3934/cpaa.2020026 |
[12] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[13] |
Changchun Liu, Pingping Li. Global existence for a chemotaxis-haptotaxis model with $ p $-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1399-1419. doi: 10.3934/cpaa.2020070 |
[14] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control and Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[15] |
K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013 |
[16] |
Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100 |
[17] |
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 |
[18] |
Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 |
[19] |
Nikolay Dimitrov, Stepan Tersian. Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 555-567. doi: 10.3934/dcdsb.2019254 |
[20] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]