-
Previous Article
A multi-stage SIR model for rumor spreading
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a metapopulation epidemic model with localized culling
An adaptative model for a multistage structured population under fluctuating environment
1. | Bordeaux University, IMB UMR 5251, Talence, France |
2. | Tlemcen University, Department of Mathematics, Algeria, labo:Systèmes Dynamiques et applications |
We consider a modified version of a mathematical model describing the dynamics of the European Grapevine Moth, studied by Ainseba, Picart and Thiery. The improvment consists in including adaptation at the larval stage. We establish well-posedness of the model under suitable hypothesis.
References:
[1] |
B. E. Ainseba and D. Picart,
Parameter identification in multistage poppulation dynamics model, Nonlinear Anal. Real World Appl., 12 (2011), 3315-3328.
doi: 10.1016/j.nonrwa.2011.05.030. |
[2] |
B. E. Ainseba, D. Picart and D. Thiery,
An innovative multistage, physiologically structured, population model to understand the European grapevine moth dynamics, J. Math. Anal. Appl., 382 (2011), 34-46.
doi: 10.1016/j.jmaa.2011.04.021. |
[3] |
B. E. Ainseba, S. M. Bouguima and S. Fekih,
Biological consistency of an epidemic model with both vertical and horizontal transmissions, Nonlinear Anal. Real World Appl., 28 (2016), 192-207.
doi: 10.1016/j.nonrwa.2015.09.010. |
[4] |
H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis, De Gruter Studies in Mathematics, 13, Walter de Gruyter & Co., Berlin, 1990.
doi: 10.1515/9783110853698. |
[5] |
A. Calsina, S. Cuadrado, L. Desvillettes and G. Raoul,
Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 1123-1146.
doi: 10.1017/S0308210510001629. |
[6] |
A. Calsina and J. M. Palmada,
Steady states of selection-mutation model for an age structured population, J. Math. Anal. Appl., 400 (2013), 386-395.
doi: 10.1016/j.jmaa.2012.11.042. |
[7] |
A. Calsina and J. Saldaña,
A model of physiologically structured population dynamics with nonlinear growth structured population dynamics with nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364.
doi: 10.1007/BF00176377. |
[8] |
J. Cleveland and A. S. Ackleh,
Evolutionary game theory on measure spaces: Well-posedness, Nonlinear Anal. Real World Appl., 14 (2013), 785-797.
doi: 10.1016/j.nonrwa.2012.08.002. |
[9] |
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame,
The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.
doi: 10.1016/j.tpb.2004.12.003. |
[10] |
M. Farkas,
On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107-123.
doi: 10.1016/S0096-3003(01)00131-X. |
[11] |
C. P. Ferreira, S. P. Lyra, F. Azevedo, D. Greenhalgh and E. Massad, Modelling the impact of the long-term use of insecticide-treated bet nets on Anopheles mosquito biting time, Malaria J., 16 (2017).
doi: 10.1186/s12936-017-2014-6. |
[12] |
M. E. Gurtin and R. C. MacCamy,
Non-linear age-dependent population dynamics, Arch. Rational. Mech. Anal., 54 (1974), 281-300.
doi: 10.1007/BF00250793. |
[13] |
M. Iannelli and F. Milner, The Basic Approach to Age-Structured Population Dynamics. Models, Methods and Numerics, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Dordrecht, 2017.
doi: 10.1007/978-94-024-1146-1. |
[14] |
Y. Iwasa and S. A. Levin,
The timing of life history events, J. Theor. Biol., 172 (1995), 33-42.
doi: 10.1006/jtbi.1995.0003. |
[15] |
N. Kato,
A general model of size-dependent population dynamics with nonlinear growth rate, J. Math. Anal. Appl., 297 (2004), 234-256.
doi: 10.1016/j.jmaa.2004.05.004. |
[16] |
N. Kato and H. Torikata,
Local existence for a general model of size-dependent population dynamics, Abstr. Appl. Anal., 2 (1997), 207-226.
doi: 10.1155/S1085337597000353. |
[17] |
P. Koeller,
Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean, Science, 324 (2009), 791-793.
doi: 10.1126/science.1170987. |
[18] |
A. Laurila, J. Kujasalo and E. Ranta,
Predator-induced changes in life history in two anuran tadpoles: Effects of predator diet, Oikos, 83 (1998), 307-317.
doi: 10.2307/3546842. |
[19] |
D. Ludwig and L. Rowe,
Life-history strategies for energy gain and predator avoidance under time constraints, Am. Nat., 135 (1990), 686-707.
doi: 10.1086/285069. |
[20] |
P. Marcati,
On the global stability of the logistic age-dependent population growth, J. Math. Biol., 15 (1982), 215-226.
doi: 10.1007/BF00275074. |
[21] |
A. G. M'Kendrick,
Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130.
doi: 10.1017/S0013091500034428. |
[22] |
J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lectures Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-662-13159-6. |
[23] |
J. V. Moore,
Biotic control of stream fluxes: Spawning salmon drive nutrient and matter export, Ecology, 88 (2007), 1278-1291.
doi: 10.1890/06-0782. |
[24] |
D. K. Skelly and L. K. Freidenburg,
Effect of beaver on the thermal biology of an amphibian, Ecol. Lett., 3 (2000), 483-486.
doi: 10.1111/j.1461-0248.2000.00186.x. |
[25] |
F. R. Sharp and A. J. Lotka, A problem in age-distribution, in Mathematical Demography, Biomathematics, 6, Springer, Berlin, 97–100.
doi: 10.1007/978-3-642-81046-6_13. |
[26] |
L. B. Slobodkin,
Populations dynamics in Daphnia obtusa Kurz, Ecol. Monog., 24 (1954), 69-89.
doi: 10.2307/1943511. |
[27] |
J. W. Sinko and W. Streifer,
A new model for age-size structure of a population, Ecology, 48 (1967), 910-918.
doi: 10.2307/1934533. |
[28] |
H. Stibor,
Predator induced life-history shifts in a freshwater cladoceran, Oecolgia, 92 (1992), 162-165.
doi: 10.1007/BF00317358. |
[29] |
D. Thiéry and J. Moreau,
Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts, Oecologia, 143 (2005), 548-557.
doi: 10.1007/s00442-005-0022-7. |
[30] |
D. Thiéry, K. Monceau and J. Moreau,
Different emergence phenology of European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae) on six varieties of grapes, Bull. Etymological Res., 104 (2014), 277-287.
|
[31] |
G. F. Webb, Theory of Nonlinear Age-Dependent Populations Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985. |
show all references
References:
[1] |
B. E. Ainseba and D. Picart,
Parameter identification in multistage poppulation dynamics model, Nonlinear Anal. Real World Appl., 12 (2011), 3315-3328.
doi: 10.1016/j.nonrwa.2011.05.030. |
[2] |
B. E. Ainseba, D. Picart and D. Thiery,
An innovative multistage, physiologically structured, population model to understand the European grapevine moth dynamics, J. Math. Anal. Appl., 382 (2011), 34-46.
doi: 10.1016/j.jmaa.2011.04.021. |
[3] |
B. E. Ainseba, S. M. Bouguima and S. Fekih,
Biological consistency of an epidemic model with both vertical and horizontal transmissions, Nonlinear Anal. Real World Appl., 28 (2016), 192-207.
doi: 10.1016/j.nonrwa.2015.09.010. |
[4] |
H. Amann, Ordinary Differential Equations. An Introduction to Nonlinear Analysis, De Gruter Studies in Mathematics, 13, Walter de Gruyter & Co., Berlin, 1990.
doi: 10.1515/9783110853698. |
[5] |
A. Calsina, S. Cuadrado, L. Desvillettes and G. Raoul,
Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 1123-1146.
doi: 10.1017/S0308210510001629. |
[6] |
A. Calsina and J. M. Palmada,
Steady states of selection-mutation model for an age structured population, J. Math. Anal. Appl., 400 (2013), 386-395.
doi: 10.1016/j.jmaa.2012.11.042. |
[7] |
A. Calsina and J. Saldaña,
A model of physiologically structured population dynamics with nonlinear growth structured population dynamics with nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364.
doi: 10.1007/BF00176377. |
[8] |
J. Cleveland and A. S. Ackleh,
Evolutionary game theory on measure spaces: Well-posedness, Nonlinear Anal. Real World Appl., 14 (2013), 785-797.
doi: 10.1016/j.nonrwa.2012.08.002. |
[9] |
O. Diekmann, P. E. Jabin, S. Mischler and B. Perthame,
The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.
doi: 10.1016/j.tpb.2004.12.003. |
[10] |
M. Farkas,
On the stability of stationary age distributions, Appl. Math. Comput., 131 (2002), 107-123.
doi: 10.1016/S0096-3003(01)00131-X. |
[11] |
C. P. Ferreira, S. P. Lyra, F. Azevedo, D. Greenhalgh and E. Massad, Modelling the impact of the long-term use of insecticide-treated bet nets on Anopheles mosquito biting time, Malaria J., 16 (2017).
doi: 10.1186/s12936-017-2014-6. |
[12] |
M. E. Gurtin and R. C. MacCamy,
Non-linear age-dependent population dynamics, Arch. Rational. Mech. Anal., 54 (1974), 281-300.
doi: 10.1007/BF00250793. |
[13] |
M. Iannelli and F. Milner, The Basic Approach to Age-Structured Population Dynamics. Models, Methods and Numerics, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Dordrecht, 2017.
doi: 10.1007/978-94-024-1146-1. |
[14] |
Y. Iwasa and S. A. Levin,
The timing of life history events, J. Theor. Biol., 172 (1995), 33-42.
doi: 10.1006/jtbi.1995.0003. |
[15] |
N. Kato,
A general model of size-dependent population dynamics with nonlinear growth rate, J. Math. Anal. Appl., 297 (2004), 234-256.
doi: 10.1016/j.jmaa.2004.05.004. |
[16] |
N. Kato and H. Torikata,
Local existence for a general model of size-dependent population dynamics, Abstr. Appl. Anal., 2 (1997), 207-226.
doi: 10.1155/S1085337597000353. |
[17] |
P. Koeller,
Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean, Science, 324 (2009), 791-793.
doi: 10.1126/science.1170987. |
[18] |
A. Laurila, J. Kujasalo and E. Ranta,
Predator-induced changes in life history in two anuran tadpoles: Effects of predator diet, Oikos, 83 (1998), 307-317.
doi: 10.2307/3546842. |
[19] |
D. Ludwig and L. Rowe,
Life-history strategies for energy gain and predator avoidance under time constraints, Am. Nat., 135 (1990), 686-707.
doi: 10.1086/285069. |
[20] |
P. Marcati,
On the global stability of the logistic age-dependent population growth, J. Math. Biol., 15 (1982), 215-226.
doi: 10.1007/BF00275074. |
[21] |
A. G. M'Kendrick,
Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130.
doi: 10.1017/S0013091500034428. |
[22] |
J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lectures Notes in Biomathematics, 68, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-662-13159-6. |
[23] |
J. V. Moore,
Biotic control of stream fluxes: Spawning salmon drive nutrient and matter export, Ecology, 88 (2007), 1278-1291.
doi: 10.1890/06-0782. |
[24] |
D. K. Skelly and L. K. Freidenburg,
Effect of beaver on the thermal biology of an amphibian, Ecol. Lett., 3 (2000), 483-486.
doi: 10.1111/j.1461-0248.2000.00186.x. |
[25] |
F. R. Sharp and A. J. Lotka, A problem in age-distribution, in Mathematical Demography, Biomathematics, 6, Springer, Berlin, 97–100.
doi: 10.1007/978-3-642-81046-6_13. |
[26] |
L. B. Slobodkin,
Populations dynamics in Daphnia obtusa Kurz, Ecol. Monog., 24 (1954), 69-89.
doi: 10.2307/1943511. |
[27] |
J. W. Sinko and W. Streifer,
A new model for age-size structure of a population, Ecology, 48 (1967), 910-918.
doi: 10.2307/1934533. |
[28] |
H. Stibor,
Predator induced life-history shifts in a freshwater cladoceran, Oecolgia, 92 (1992), 162-165.
doi: 10.1007/BF00317358. |
[29] |
D. Thiéry and J. Moreau,
Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts, Oecologia, 143 (2005), 548-557.
doi: 10.1007/s00442-005-0022-7. |
[30] |
D. Thiéry, K. Monceau and J. Moreau,
Different emergence phenology of European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae) on six varieties of grapes, Bull. Etymological Res., 104 (2014), 277-287.
|
[31] |
G. F. Webb, Theory of Nonlinear Age-Dependent Populations Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985. |
[1] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045 |
[2] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[3] |
József Z. Farkas, Peter Hinow. Physiologically structured populations with diffusion and dynamic boundary conditions. Mathematical Biosciences & Engineering, 2011, 8 (2) : 503-513. doi: 10.3934/mbe.2011.8.503 |
[4] |
Michele L. Joyner, Cammey C. Manning, Whitney Forbes, Michelle Maiden, Ariel N. Nikas. A physiologically-based pharmacokinetic model for the antibiotic ertapenem. Mathematical Biosciences & Engineering, 2016, 13 (1) : 119-133. doi: 10.3934/mbe.2016.13.119 |
[5] |
Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 |
[6] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[7] |
Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379 |
[8] |
Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255 |
[9] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[10] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[11] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[12] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[13] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[14] |
Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467 |
[15] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[16] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure and Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
[17] |
Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 |
[18] |
Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273 |
[19] |
Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024 |
[20] |
Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial and Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]