[1]
|
H. R. Akcakaya, Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.
doi: 10.2307/2937172.
|
[2]
|
H. R. Akcakaya, R. Arditi and L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.
doi: 10.2307/1939362.
|
[3]
|
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.
doi: 10.1016/S0022-5193(89)80211-5.
|
[4]
|
A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976.
|
[5]
|
A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
doi: 10.1142/9789812798725.
|
[6]
|
F. Berezovskaya, G. Karev and R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.
doi: 10.1007/s002850000078.
|
[7]
|
R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388.
|
[8]
|
R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421.
|
[9]
|
S. N. Chow, C. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511665639.
|
[10]
|
A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563.
|
[11]
|
J. Hainzl, Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.
doi: 10.1137/0148008.
|
[12]
|
J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.
doi: 10.1137/0523008.
|
[13]
|
J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.
|
[14]
|
S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.
doi: 10.1007/s002850100079.
|
[15]
|
J. Huang, S. Ruan and J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.
doi: 10.1016/j.jde.2014.04.024.
|
[16]
|
J. Huang, Y. Gong and S. Ruan, Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
doi: 10.3934/dcdsb.2013.18.2101.
|
[17]
|
X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp.
doi: 10.1142/S0218127417502224.
|
[18]
|
C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.
doi: 10.1006/bulm.1998.0072.
|
[19]
|
Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.
doi: 10.1007/s002850050105.
|
[20]
|
B. Li and Y. Kuang, Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.
doi: 10.1137/060662460.
|
[21]
|
P. Parrilo and S. Lall, Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.
doi: 10.3166/ejc.9.307-321.
|
[22]
|
S. Ruan, Y. Tang and W. Zhang, Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.
doi: 10.1007/s00285-007-0153-z.
|
[23]
|
S. Ruan, Y. Tang and W. Zhang, Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.
doi: 10.1016/j.jde.2010.06.015.
|
[24]
|
S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
doi: 10.1137/S0036139999361896.
|
[25]
|
Z. She, H. Li, B. Xue, Z. Zheng and B. Xia, Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.
doi: 10.1016/j.jsc.2013.06.003.
|
[26]
|
F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59.
doi: 10.1201/9781420034288-1.
|
[27]
|
Y. Tang and W. Zhang, Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.
doi: 10.1007/s00285-004-0307-1.
|
[28]
|
S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990.
doi: 10.1007/978-1-4757-4067-7.
|
[29]
|
D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506.
|
[30]
|
D. Xiao and S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.
doi: 10.1007/s002850100097.
|
[31]
|
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992.
|
[32]
|
X. Zheng, Z. She, Q. Liang and M. Li, Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.
doi: 10.1002/rnc.4010.
|