
-
Previous Article
Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment
- DCDS-B Home
- This Issue
-
Next Article
A comparative study of atomistic-based stress evaluation
Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response
1. | School of Mathematics and Systems Science, Beihang University, Beijing 100191, China |
2. | Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA |
In this paper, we study the global dynamics of a density-dependent predator-prey system with ratio-dependent functional response. The main features and challenges are that the origin of this model is a degenerate equilibrium of higher order and there are multiple positive equilibria. Firstly, local qualitative behavior of the system around the origin is explicitly described. Then, based on the dynamics around the origin and other equilibria, global qualitative analysis of the model is carried out. Finally, the existence of Bogdanov-Takens bifurcation (cusp case) of codimension two is analyzed. This shows that the system undergoes various bifurcation phenomena, including saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation along with different topological sectors near the degenerate origin. Numerical simulations are presented to illustrate the theoretical results.
References:
[1] |
H. R. Akcakaya,
Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.
doi: 10.2307/2937172. |
[2] |
H. R. Akcakaya, R. Arditi and L. R. Ginzburg,
Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.
doi: 10.2307/1939362. |
[3] |
R. Arditi and L. R. Ginzburg,
Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.
doi: 10.1016/S0022-5193(89)80211-5. |
[4] |
A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976. Google Scholar |
[5] |
A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
doi: 10.1142/9789812798725. |
[6] |
F. Berezovskaya, G. Karev and R. Arditi,
Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.
doi: 10.1007/s002850000078. |
[7] |
R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388. Google Scholar |
[8] |
R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421. Google Scholar |
[9] |
S. N. Chow, C. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511665639.![]() ![]() |
[10] |
A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563. Google Scholar |
[11] |
J. Hainzl,
Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.
doi: 10.1137/0148008. |
[12] |
J. Hainzl,
Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.
doi: 10.1137/0523008. |
[13] |
J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. |
[14] |
S. B. Hsu, T. W. Hwang and Y. Kuang,
Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.
doi: 10.1007/s002850100079. |
[15] |
J. Huang, S. Ruan and J. Song,
Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.
doi: 10.1016/j.jde.2014.04.024. |
[16] |
J. Huang, Y. Gong and S. Ruan,
Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
doi: 10.3934/dcdsb.2013.18.2101. |
[17] |
X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp.
doi: 10.1142/S0218127417502224. |
[18] |
C. Jost, O. Arino and R. Arditi,
About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.
doi: 10.1006/bulm.1998.0072. |
[19] |
Y. Kuang and E. Beretta,
Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.
doi: 10.1007/s002850050105. |
[20] |
B. Li and Y. Kuang,
Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.
doi: 10.1137/060662460. |
[21] |
P. Parrilo and S. Lall,
Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.
doi: 10.3166/ejc.9.307-321. |
[22] |
S. Ruan, Y. Tang and W. Zhang,
Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.
doi: 10.1007/s00285-007-0153-z. |
[23] |
S. Ruan, Y. Tang and W. Zhang,
Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.
doi: 10.1016/j.jde.2010.06.015. |
[24] |
S. Ruan and D. Xiao,
Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
doi: 10.1137/S0036139999361896. |
[25] |
Z. She, H. Li, B. Xue, Z. Zheng and B. Xia,
Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.
doi: 10.1016/j.jsc.2013.06.003. |
[26] |
F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59.
doi: 10.1201/9781420034288-1. |
[27] |
Y. Tang and W. Zhang,
Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.
doi: 10.1007/s00285-004-0307-1. |
[28] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990.
doi: 10.1007/978-1-4757-4067-7. |
[29] |
D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506. |
[30] |
D. Xiao and S. Ruan,
Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.
doi: 10.1007/s002850100097. |
[31] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992. |
[32] |
X. Zheng, Z. She, Q. Liang and M. Li,
Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.
doi: 10.1002/rnc.4010. |
show all references
References:
[1] |
H. R. Akcakaya,
Population cycles of mammals: Evidence for a ratio-dependent predation hypothesis, Ecol. Monogr., 62 (1992), 119-142.
doi: 10.2307/2937172. |
[2] |
H. R. Akcakaya, R. Arditi and L. R. Ginzburg,
Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995-1004.
doi: 10.2307/1939362. |
[3] |
R. Arditi and L. R. Ginzburg,
Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311-326.
doi: 10.1016/S0022-5193(89)80211-5. |
[4] |
A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, Int. Inst. Appl. Syst. Analysis, Laxenburg, 1976. Google Scholar |
[5] |
A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 11, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
doi: 10.1142/9789812798725. |
[6] |
F. Berezovskaya, G. Karev and R. Arditi,
Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221-246.
doi: 10.1007/s002850000078. |
[7] |
R. Bogdonov, Bifurcations of a limit cycle for a family of vector fields on the plane, Selecta Mathe. Soviet., 1 (1981), 373-388. Google Scholar |
[8] |
R. Bogdonov, Versal deformations of a singular point on the plane in the case of zero eigenvalues, Selecta Mathe. Soviet., 1 (1981), 389-421. Google Scholar |
[9] |
S. N. Chow, C. Z. Li and D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511665639.![]() ![]() |
[10] |
A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552-1563. Google Scholar |
[11] |
J. Hainzl,
Stability and Hopf bifurcaiton in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170-190.
doi: 10.1137/0148008. |
[12] |
J. Hainzl,
Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150-180.
doi: 10.1137/0523008. |
[13] |
J. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. |
[14] |
S. B. Hsu, T. W. Hwang and Y. Kuang,
Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489-506.
doi: 10.1007/s002850100079. |
[15] |
J. Huang, S. Ruan and J. Song,
Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differential Equations, 257 (2014), 1721-1752.
doi: 10.1016/j.jde.2014.04.024. |
[16] |
J. Huang, Y. Gong and S. Ruan,
Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2101-2121.
doi: 10.3934/dcdsb.2013.18.2101. |
[17] |
X. Jiang, Z. She, Z. Feng and X. Zheng, Structural stability of a density dependent predator-prey system with ratio-dependent functional response, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 27 (2017), 21pp.
doi: 10.1142/S0218127417502224. |
[18] |
C. Jost, O. Arino and R. Arditi,
About deterministic extinction in ratio-dependent predator-prey models, Bull. Math. Biol., 61 (1999), 19-32.
doi: 10.1006/bulm.1998.0072. |
[19] |
Y. Kuang and E. Beretta,
Global qualitative analysis of a ratio-dependence predator-prey system, J. Math. Biol., 36 (1998), 389-406.
doi: 10.1007/s002850050105. |
[20] |
B. Li and Y. Kuang,
Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system, SIAM J. Appl. Math., 67 (2007), 1453-1464.
doi: 10.1137/060662460. |
[21] |
P. Parrilo and S. Lall,
Semidefinite programming relaxations and algebraic optimization in control, European J. Control, 9 (2003), 307-321.
doi: 10.3166/ejc.9.307-321. |
[22] |
S. Ruan, Y. Tang and W. Zhang,
Computing the heteroclinic bifurcation curves in predator-prey systems with ratio-dependent functional response, J. Math. Biol., 57 (2008), 223-241.
doi: 10.1007/s00285-007-0153-z. |
[23] |
S. Ruan, Y. Tang and W. Zhang,
Versal unfoldings of predator-prey systems with ratio-dependent functional response, J. Differential Equations, 249 (2010), 1410-1435.
doi: 10.1016/j.jde.2010.06.015. |
[24] |
S. Ruan and D. Xiao,
Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
doi: 10.1137/S0036139999361896. |
[25] |
Z. She, H. Li, B. Xue, Z. Zheng and B. Xia,
Discovering polynomial Lyapunov functions for continuous dynamical systems, J. Symbolic Comput., 58 (2013), 41-63.
doi: 10.1016/j.jsc.2013.06.003. |
[26] |
F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis, I, Comm. Math. Inst. Rijksuniv. Utrecht, 3, Math. Inst. Rijksuniv. Utrecht, Utrecht, 1974, 1-59.
doi: 10.1201/9781420034288-1. |
[27] |
Y. Tang and W. Zhang,
Heteroclinic bifurcation in a ratio-dependent predator-prey system, J. Math. Biol., 50 (2005), 699-712.
doi: 10.1007/s00285-004-0307-1. |
[28] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Texts in Applied Mathematics, 2, Spring-Verlag, New York, 1990.
doi: 10.1007/978-1-4757-4067-7. |
[29] |
D. Xiao and S. Ruan, Bogdoanov-Takens bifurcations in predator-prey systems with constant rate harvesting, in Differential Equations with Applications to Biology, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999,493-506. |
[30] |
D. Xiao and S. Ruan,
Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268-290.
doi: 10.1007/s002850100097. |
[31] |
Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations, Translations of Mathematical Monographs, 101, American Mathematical Society, Providence, RI, 1992. |
[32] |
X. Zheng, Z. She, Q. Liang and M. Li,
Inner approximations of domains of attraction for a class of switched systems by computing Lyapunov-like functions, Internat. J. Robust Nonlinear Control, 28 (2018), 2191-2208.
doi: 10.1002/rnc.4010. |











Condition |
Condition |
Global Results | Hopf bifurcation | |
Theorem 3.3 | Does not exist | |||
Theorem 3.3 | Does not exist | |||
Theorem 3.3 | Does not exist | |||
Does not exist | ||||
Does not exist | ||||
Theorem 3.4 | Does not exist | |||
Does not exist | ||||
Theorem 3.5 | Does not exist | |||
Does not exist | ||||
Theorem 3.6 | Remark 1 | |||
Theorem 3.7 | Does not exist | |||
Theorem 3.8 | Does not exist | |||
Does not exist | ||||
Theorem 3.9 | Remark 3 | |||
Does not exist | ||||
Does not exist | ||||
Theorem 3.10 | Does not exist | |||
Theorem 3.10 | Does not exist | |||
Does not exist | ||||
Does not exist | ||||
Theorem 3.11 | Remark 5 | |||
Theorem 3.11 | Remark 5 | |||
Theorem 3.11 | Does not exist | |||
Does not exist | ||||
Here |
Condition |
Condition |
Global Results | Hopf bifurcation | |
Theorem 3.3 | Does not exist | |||
Theorem 3.3 | Does not exist | |||
Theorem 3.3 | Does not exist | |||
Does not exist | ||||
Does not exist | ||||
Theorem 3.4 | Does not exist | |||
Does not exist | ||||
Theorem 3.5 | Does not exist | |||
Does not exist | ||||
Theorem 3.6 | Remark 1 | |||
Theorem 3.7 | Does not exist | |||
Theorem 3.8 | Does not exist | |||
Does not exist | ||||
Theorem 3.9 | Remark 3 | |||
Does not exist | ||||
Does not exist | ||||
Theorem 3.10 | Does not exist | |||
Theorem 3.10 | Does not exist | |||
Does not exist | ||||
Does not exist | ||||
Theorem 3.11 | Remark 5 | |||
Theorem 3.11 | Remark 5 | |||
Theorem 3.11 | Does not exist | |||
Does not exist | ||||
Here |
[1] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[2] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[3] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[4] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[5] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[6] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[7] |
Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021007 |
[8] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[9] |
Alex P. Farrell, Horst R. Thieme. Predator – Prey/Host – Parasite: A fragile ecoepidemic system under homogeneous infection incidence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 217-267. doi: 10.3934/dcdsb.2020328 |
[10] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[11] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[12] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[13] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[14] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[15] |
Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021002 |
[16] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[17] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[18] |
Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046 |
[19] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[20] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]