August  2020, 25(8): 2895-2921. doi: 10.3934/dcdsb.2020045

Pattern formation in a predator-mediated coexistence model with prey-taxis

1. 

Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL, USA

2. 

Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, USA

Received  October 2018 Revised  September 2019 Published  August 2020 Early access  February 2020

Can foraging by predators or a repulsive prey defense mechanism upset predator-mediated coexistence? This paper investigates one scenario involving a prey-taxis by a prey species. We study a system of three populations involving two competing species with a common predator. All three populations are mobile via random dispersal within a bounded spatial domain $ \Omega $, but the predator's movement is influenced by one prey's gradient representing a repulsive effect on the predator. We prove existence of positive solutions, and investigate pattern formation through bifurcation analysis and numerical simulation.

Citation: Evan C. Haskell, Jonathan Bell. Pattern formation in a predator-mediated coexistence model with prey-taxis. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2895-2921. doi: 10.3934/dcdsb.2020045
References:
[1]

B. E. AinsebaM. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.

[2]

N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[3]

M. S. Alnæs, J. Blechta, J. Hake, A. Johansson and B. Kehlet, et al., The FEniCS project, version 1.5, Archive Numerical Software, 3. doi: 10.11588/ans.2015.100.20553.

[4]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126. doi: 10.1007/978-3-663-11336-2_1.

[5]

H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ: Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75. 

[6]

B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 47 (2009), 1391-1420.  doi: 10.1137/080719583.

[7]

M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863-879.  doi: 10.3934/nhm.2008.3.863.

[8]

M. Burger and J.-F. Pietschmann, Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.  doi: 10.1088/0951-7715/29/11/3528.

[9]

G. Caristi, K. P. Rybakowski and T. Wessolek, Persistence and spatial patterns in a onepredator-two-prey Lotka-Volterra model with diffusion, Ann. Mat. Pura Appl. (4), 161 (1992), 345–377. doi: 10.1007/BF01759645.

[10]

J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl and P. Chesson, et al., The interaction between predation and competition: A review and synthesis, Ecology Lett., 5 (2002), 302–315. doi: 10.1046/j.1461-0248.2002.00315.x.

[11]

A. ChertockA. KurganovX. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.

[12]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.

[13]

N. Cramer and R. May, Interspecific competition, predation and species diversity: A comment, J. Theoretical Biology, 34 (1972), 289-293.  doi: 10.1016/0022-5193(72)90162-2.

[14]

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathematics & Applications, 69, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-22980-0.

[15]

W. Feng, Coexistence, stability, and limiting behavior in a one-predator-two-prey model, J. Math. Anal. Appl., 179 (1993), 592-609.  doi: 10.1006/jmaa.1993.1371.

[16]

C. GaiQ. Wang and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.  doi: 10.3934/dcds.2015.35.1239.

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[18]

D. Horstmann et al., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165.

[19]

S. Hsu, Predator-mediated coexistence and extinction, Math. Biosci., 54 (1981), 231-248.  doi: 10.1016/0025-5564(81)90088-2.

[20]

G. E. Hutchinson, The paradox of the plankton, Amer. Naturalist, 95 (1961), 137-145.  doi: 10.1086/282171.

[21]

H.-Y. Jin and Z.-A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040.

[22]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Amer. Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.

[23]

P. Korman and A. W. Leung, A general monotone scheme for elliptic systems with applications to ecological models, Proc. Roy. Soc. Edinburgh Sect. A, 102 (1986), 315-325.  doi: 10.1017/S0308210500026391.

[24]

A. Kurganov and M. Lukáčová-Medvid'ová, Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 131-152.  doi: 10.3934/dcdsb.2014.19.131.

[25]

N. Lakos, Existence of steady-state solutions for a one-predator-two-prey system, SIAM J. Math. Anal., 21 (1990), 647-659.  doi: 10.1137/0521034.

[26]

J. LeeT. Hillen and M. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.

[27]

C. Li and Z. Hong, Global existence of classical solutions to a three-species predator-prey model with two prey-taxes, J. Appl. Math., 2012, 12pp. doi: 10.1155/2012/702603.

[28]

Y. LiK. Lin and C. Mu, Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electronic J. Differential Equations, 2015 (2015), 1-13. 

[29]

A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, Lecture Notes in Computational Science and Engineering, 84, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23099-8.

[30]

R. M. May, Stability in multispecies community models, Math. Biosci., 12 (1971), 59-79.  doi: 10.1016/0025-5564(71)90074-5.

[31]

J. Murray, Mathematical Biology. I: An Introduction, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868.

[32]

R. T. Paine, Food web complexity and species diversity, Amer. Naturalist, 100 (1966), 65-75.  doi: 10.1086/282400.

[33]

J. Parrish and S. Saila, Interspecific competition, predation and species diversity, J. Theoretical Biology, 27 (1970), 207-220.  doi: 10.1016/0022-5193(70)90138-4.

[34]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.

[35]

J. I. Tello and D. Wrzosek, Inter-species competition and chemorepulsion, J. Math. Anal. Appl., 459 (2018), 1233-1250.  doi: 10.1016/j.jmaa.2017.11.021.

[36]

S. Vȧge, G. Bratbak, J. Egge, M. Heldal and A. Larsen, et al., Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs, Ecology Lett., 21 (2018), 1440–1452. doi: 10.1111/ele.13122.

[37]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator–prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.  doi: 10.1002/mma.3079.

[38]

X. Wang and X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2018), 775-805.  doi: 10.3934/mbe.2018035.

[39]

Z. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 13pp. doi: 10.1063/1.2766864.

[40]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[41]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59 (2004), 1293-1310.  doi: 10.1016/j.na.2004.08.015.

[42]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.

show all references

References:
[1]

B. E. AinsebaM. Bendahmane and A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086-2105.  doi: 10.1016/j.nonrwa.2007.06.017.

[2]

N. D. Alikakos, $L^{p}$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  doi: 10.1080/03605307908820113.

[3]

M. S. Alnæs, J. Blechta, J. Hake, A. Johansson and B. Kehlet, et al., The FEniCS project, version 1.5, Archive Numerical Software, 3. doi: 10.11588/ans.2015.100.20553.

[4]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993, 9–126. doi: 10.1007/978-3-663-11336-2_1.

[5]

H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ: Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75. 

[6]

B. Ayuso and L. D. Marini, Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 47 (2009), 1391-1420.  doi: 10.1137/080719583.

[7]

M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863-879.  doi: 10.3934/nhm.2008.3.863.

[8]

M. Burger and J.-F. Pietschmann, Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.  doi: 10.1088/0951-7715/29/11/3528.

[9]

G. Caristi, K. P. Rybakowski and T. Wessolek, Persistence and spatial patterns in a onepredator-two-prey Lotka-Volterra model with diffusion, Ann. Mat. Pura Appl. (4), 161 (1992), 345–377. doi: 10.1007/BF01759645.

[10]

J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl and P. Chesson, et al., The interaction between predation and competition: A review and synthesis, Ecology Lett., 5 (2002), 302–315. doi: 10.1046/j.1461-0248.2002.00315.x.

[11]

A. ChertockA. KurganovX. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95.  doi: 10.3934/krm.2012.5.51.

[12]

C. Cosner, Reaction-diffusion-advection models for the effects and evolution of dispersal, Discrete Contin. Dyn. Syst., 34 (2014), 1701-1745.  doi: 10.3934/dcds.2014.34.1701.

[13]

N. Cramer and R. May, Interspecific competition, predation and species diversity: A comment, J. Theoretical Biology, 34 (1972), 289-293.  doi: 10.1016/0022-5193(72)90162-2.

[14]

D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Mathematics & Applications, 69, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-22980-0.

[15]

W. Feng, Coexistence, stability, and limiting behavior in a one-predator-two-prey model, J. Math. Anal. Appl., 179 (1993), 592-609.  doi: 10.1006/jmaa.1993.1371.

[16]

C. GaiQ. Wang and J. Yan, Qualitative analysis of a Lotka-Volterra competition system with advection, Discrete Contin. Dyn. Syst., 35 (2015), 1239-1284.  doi: 10.3934/dcds.2015.35.1239.

[17]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.

[18]

D. Horstmann et al., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165.

[19]

S. Hsu, Predator-mediated coexistence and extinction, Math. Biosci., 54 (1981), 231-248.  doi: 10.1016/0025-5564(81)90088-2.

[20]

G. E. Hutchinson, The paradox of the plankton, Amer. Naturalist, 95 (1961), 137-145.  doi: 10.1086/282171.

[21]

H.-Y. Jin and Z.-A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differential Equations, 260 (2016), 162-196.  doi: 10.1016/j.jde.2015.08.040.

[22]

P. Kareiva and G. Odell, Swarms of predators exhibit "preytaxis" if individual predators use area-restricted search, Amer. Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.

[23]

P. Korman and A. W. Leung, A general monotone scheme for elliptic systems with applications to ecological models, Proc. Roy. Soc. Edinburgh Sect. A, 102 (1986), 315-325.  doi: 10.1017/S0308210500026391.

[24]

A. Kurganov and M. Lukáčová-Medvid'ová, Numerical study of two-species chemotaxis models, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 131-152.  doi: 10.3934/dcdsb.2014.19.131.

[25]

N. Lakos, Existence of steady-state solutions for a one-predator-two-prey system, SIAM J. Math. Anal., 21 (1990), 647-659.  doi: 10.1137/0521034.

[26]

J. LeeT. Hillen and M. Lewis, Pattern formation in prey-taxis systems, J. Biol. Dyn., 3 (2009), 551-573.  doi: 10.1080/17513750802716112.

[27]

C. Li and Z. Hong, Global existence of classical solutions to a three-species predator-prey model with two prey-taxes, J. Appl. Math., 2012, 12pp. doi: 10.1155/2012/702603.

[28]

Y. LiK. Lin and C. Mu, Asymptotic behavior for small mass in an attraction-repulsion chemotaxis system, Electronic J. Differential Equations, 2015 (2015), 1-13. 

[29]

A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Book, Lecture Notes in Computational Science and Engineering, 84, Springer, Heidelberg, 2012. doi: 10.1007/978-3-642-23099-8.

[30]

R. M. May, Stability in multispecies community models, Math. Biosci., 12 (1971), 59-79.  doi: 10.1016/0025-5564(71)90074-5.

[31]

J. Murray, Mathematical Biology. I: An Introduction, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868.

[32]

R. T. Paine, Food web complexity and species diversity, Amer. Naturalist, 100 (1966), 65-75.  doi: 10.1086/282400.

[33]

J. Parrish and S. Saila, Interspecific competition, predation and species diversity, J. Theoretical Biology, 27 (1970), 207-220.  doi: 10.1016/0022-5193(70)90138-4.

[34]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162.  doi: 10.1142/S0218202516400108.

[35]

J. I. Tello and D. Wrzosek, Inter-species competition and chemorepulsion, J. Math. Anal. Appl., 459 (2018), 1233-1250.  doi: 10.1016/j.jmaa.2017.11.021.

[36]

S. Vȧge, G. Bratbak, J. Egge, M. Heldal and A. Larsen, et al., Simple models combining competition, defence and resource availability have broad implications in pelagic microbial food webs, Ecology Lett., 21 (2018), 1440–1452. doi: 10.1111/ele.13122.

[37]

X. WangW. Wang and G. Zhang, Global bifurcation of solutions for a predator–prey model with prey-taxis, Math. Methods Appl. Sci., 38 (2015), 431-443.  doi: 10.1002/mma.3079.

[38]

X. Wang and X. Zou, Pattern formation of a predator-prey model with the cost of anti-predator behaviors, Math. Biosci. Eng., 15 (2018), 775-805.  doi: 10.3934/mbe.2018035.

[39]

Z. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model, Chaos, 17 (2007), 13pp. doi: 10.1063/1.2766864.

[40]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.

[41]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of overcrowding, Nonlinear Anal., 59 (2004), 1293-1310.  doi: 10.1016/j.na.2004.08.015.

[42]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.

Figure 1.  A plot of $ \chi $ versus $ k^{2} $. The red line is $ \chi_{c} $ as a function of $ k^{2} $. The blue dashed line shows $ a(k^{2})b(k^{2}, \chi)-c(k^{2}, \chi) = 0 $. Values of ($ k^{2}, \chi $) above (below) the blue dashed line correspond to $ a(k^{2})b(k^{2}, \chi)-c(k^{2}, \chi) $ positive (negative). This is an example where we use the parameter set: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, d) = (0.70, 0.70, 0.10, 0.30, 1.39, 0.30, 0.70, 0.25) $ Hence, $ a_{1}b_{2}-rb_{1} = 0.07 $, so $ k_{min}^{2} = 0.26 $
Figure 2.  A plot of $ \chi_{c_{1}} $ and $ \chi_{c_{2}} $ versus $ k^{2} $. $ \chi_{c_{1}} $ (red line) and $ \chi_{c_{2}} $ (blue dashed line) as functions of $ k^{2} $ are plotted for the parameter set: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu) = (0.10, 0.20, 0.10, 1.50, 3.0, 0.6, 0.1) $
Figure 3.  Case 1: $ u $ "wins": In this example the parameters are chosen so that in the pure competition system $ u $ "wins". Note that while parameters are such that in the absence of a repulsive prey defense mechanism by $ u $, a predator mediated coexistence is expected; yet, once this state is disrupted $ v $ is driven to extinction in the presence of this taxis mechanism. Parameter set for this figure is: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (0.25, 0.75, 0.75, 0.25, 0.6875, 0.5, 0.25, 15, 0.5) $
Figure 4.  Case 2: $ v $ "wins": In this example the parameters are chosen so that in the pure competition system $ v $ "wins". Note that while parameters are such that in the absence of a repulsive prey defense mechanism by $ u $, a predator mediated coexistence is expected; yet, once this state is disrupted, the prey coexist with peak densities out of phase with the predator in the presence of this taxis mechanism. Parameter set for this figure is: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (1.1, 0.1, 1.4, 0.3, 0.4, 0.4, 0.2, 50, 0.25) $
Figure 5.  Spatio-temporal patterns: $ v $ "wins" case. The first column shows the initial dynamics from the perturbation of the homogeneous steady state and the second column shows the spatio-temporal pattern that is achieved. In the last row $ u(x, t) $, $ v(x, t) $, and $ w(x, t) $ are given by the blue, green, and red lines respectively. The parameter set for this figure is: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (1.25, 1.0, 0.25, 0.5, 1.25, 0.5, 0.25, 25, 0.1) $
Figure 6.  Spatio-temporal patterns: $ u $ "wins" case. The first column shows the initial dynamics from the perturbation of the homogeneous steady state and the second column shows the spatio-temporal pattern that is achieved. In the last row $ u(x, t) $, $ v(x, t) $, and $ w(x, t) $ are given by the blue, green, and red lines respectively. The parameter set for this figure is: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (0.9, 1.1, 0.2, 0.2, 1.09, 0.5, 1.0, 16, 0.25) $
Figure 7.  Attracting ($ \chi < 0 $) case: In this example the parameters are chosen so that in the pure competition system $ v $ "wins". Note that while parameters are such that in the absence of a attracing prey-taxis mechanism by $ u $, a predator mediated coexistence is expected; yet, once this state is disrupted, the prey coexist with peak densities out of phase with the predator in the presence of this taxis mechanism. Parameter set for this figure is: $ (a_{1}, a_{2}, b_{1}, b_{2}, r, \varepsilon, \mu, \chi, d) = (1.25, 1.00, 0.25, 0.50, 1.25, 0.5, 0.25, -0.1, 10) $
[1]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[2]

Xin Wang, Ruijing Li, Yu Shi. Global generalized solutions to a three species predator-prey model with prey-taxis. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022031

[3]

Guoqiang Ren, Bin Liu. Global existence and convergence to steady states for a predator-prey model with both predator- and prey-taxis. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 759-779. doi: 10.3934/dcds.2021136

[4]

Dan Li. Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1681-1705. doi: 10.3934/dcds.2020337

[5]

Ke Wang, Qi Wang, Feng Yu. Stationary and time-periodic patterns of two-predator and one-prey systems with prey-taxis. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 505-543. doi: 10.3934/dcds.2017021

[6]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks and Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[7]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1397-1420. doi: 10.3934/dcdsb.2021095

[8]

H. Malchow, F.M. Hilker, S.V. Petrovskii. Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 705-711. doi: 10.3934/dcdsb.2004.4.705

[9]

Hengling Wang, Yuxiang Li. Boundedness in prey-taxis system with rotational flux terms. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4839-4851. doi: 10.3934/cpaa.2020214

[10]

Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035

[11]

Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure and Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021

[12]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[13]

Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 245-263. doi: 10.3934/dcdss.2020468

[15]

Simone Fagioli, Yahya Jaafra. Multiple patterns formation for an aggregation/diffusion predator-prey system. Networks and Heterogeneous Media, 2021, 16 (3) : 377-411. doi: 10.3934/nhm.2021010

[16]

Peter A. Braza. A dominant predator, a predator, and a prey. Mathematical Biosciences & Engineering, 2008, 5 (1) : 61-73. doi: 10.3934/mbe.2008.5.61

[17]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3253-3269. doi: 10.3934/dcdss.2020130

[18]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[19]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038

[20]

Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021292

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (645)
  • HTML views (369)
  • Cited by (0)

Other articles
by authors

[Back to Top]