In this paper we classify the limits of solutions of a linear integral equation with finite delay. In particular, if the solution tends to a point or a periodic orbit, we establish the explicit expressions depending on given initial functions by using analysis of characteristic roots and the formal adjoint theory. Our results also present a necessary and sufficient condition for the exponential stability of the equation.
Citation: |
[1] |
T. Alarcón, P. Getto and Y. Nakata, Stability analysis of a renewal equation for cell population dynamics with quiescence, SIAM J. Appl. Math., 74 (2014), 1266-1297.
doi: 10.1137/130940438.![]() ![]() ![]() |
[2] |
T. A. Burton, Volterra Integral and Differential Equations, Mathematics in Science and Engineering, 202, Elsevier B. V., Amsterdam, 2005.
![]() ![]() |
[3] |
C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511569395.![]() ![]() ![]() |
[4] |
O. Diekmann and M. Gyllenberg, Equations with infinite delay: Blending the abstract and the concrete, J. Differential Equations, 252 (2012), 819-851.
doi: 10.1016/j.jde.2011.09.038.![]() ![]() ![]() |
[5] |
G. Gripenberg, S.-O. Londen and O. Staffans, Volterra Integral and Functional Equations, Encyclopedia of Mathematics and its Applications, 34, Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9780511662805.![]() ![]() ![]() |
[6] |
H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017.
doi: 10.1007/978-981-10-0188-8.![]() ![]() ![]() |
[7] |
H. Matsunaga, S. Murakami and V. M. Nguyen, Decomposition and variation-of-constants formula in the phase space for integral equations, Funkcial. Ekvac., 55 (2012), 479-520.
doi: 10.1619/fesi.55.479.![]() ![]() ![]() |
[8] |
H. Matsunaga, S. Murakami and Y. Nagabuchi, Formal adjoint operators and asymptotic formula for solutions of autonomous linear integral equations, J. Math. Anal. Appl., 410 (2014), 807-826.
doi: 10.1016/j.jmaa.2013.08.035.![]() ![]() ![]() |
[9] |
D. Melchor-Aguilar, On stability of integral delay systems, Appl. Math. Comput., 217 (2010), 3578-3584.
doi: 10.1016/j.amc.2010.08.058.![]() ![]() ![]() |