[1]
|
L. V. Ahlfors, Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York, 1978.
|
[2]
|
J. Ainsworth, M. Dawson, J. Pianta and J. Warwick, The Farey Sequence, 2003. Available from: http://www.maths.ed.ac.uk/aar/fareyproject.pdf.
|
[3]
|
S. Amat, S. Busquier and S. Plaza, Review of some iterative root-finding methods from a dynamical point of view, Sci. Ser. A Math. Sci. (N.S.), 10 (2004), 3-35.
|
[4]
|
I. K. Argyros and Á. A. Magreñán, On the convergence of an optimal fourth-order family of methods and its dynamics, Appl. Math. Comput., 252 (2015), 336-346.
doi: 10.1016/j.amc.2014.11.074.
|
[5]
|
A. F. Beardon, Iteration of Rational Functions. Complex Analytic Dynamical Systems, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.
|
[6]
|
R. Behl, A. Cordero, S. Motsa and J. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput., 265 (2015), 520-532.
doi: 10.1016/j.amc.2015.05.004.
|
[7]
|
R. Behl, A. Cordero, S. Motsa, J. Torregrosa and V. Kanwar, An optimal fourth-order family of methods for multiple roots and its dynamics, Numer. Algorithms, 71 (2016), 775-796.
doi: 10.1007/s11075-015-0023-5.
|
[8]
|
R. Behl, A. Cordero, S. Motsa and J. Torregrosa, Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations, Nonlinear Dynam., 91 (2018), 81-112.
doi: 10.1007/s11071-017-3858-6.
|
[9]
|
P. Blanchard, The Dynamics of Newton's Method, Proc. Sympos. Appl. Math., 49, AMS Short Course Lecture Notes, Amer. Math. Soc., Providence, RI, 1994
doi: 10.1090/psapm/049/1315536.
|
[10]
|
B. Campos, A. Cordero, J. R. Torregrosa and P. Vindel, Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family, Numer. Algorithms, 73 (2016), 141-156.
doi: 10.1007/s11075-015-0089-0.
|
[11]
|
L. Carleson and T. W. Gamelin, Complex Dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4364-9.
|
[12]
|
F. Chicharro, A. Cordero and J. R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods, Scientific World Journal, 2013 (2013), 1-11.
doi: 10.1155/2013/780153.
|
[13]
|
C. Chun, B. Neta and S. Kim, On Jarratt's family of optimal fourth-order iterative methods and their dynamics, Fractals, 22 (2014), 16pp.
doi: 10.1142/S0218348X14500133.
|
[14]
|
A. Cordero, J. García-Maimó, J. R. Torregrosa, M. P. Vassileva and P. Vindel, Chaos in King's iterative family, Appl. Math. Lett., 26 (2013), 842-848.
doi: 10.1016/j.aml.2013.03.012.
|
[15]
|
R. L. Devaney, Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets, Proceedings of Symposia in Applied Mathematics, 49, American Mathematical Society, 1994, 1–29.
|
[16]
|
M. García-Olívo, J. M. Gutíerrez and Á. A. Magreñán, A complex dynamical approach of Chebyshev's method, SeMA J., 71 (2015), 57-68.
doi: 10.1007/s40324-015-0046-9.
|
[17]
|
Y. H. Geum and Y. I. Kim, A two-parameter family of fourth-order iterative methods with optimal convergence for multiple zeros, J. Appl. Math., 2013 (2013), 1-7.
doi: 10.1155/2013/369067.
|
[18]
|
Y. H. Geum, Y. I. Kim and B. Neta, Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points, J. Comput. Appl. Math., 333 (2018), 131-156.
doi: 10.1016/j.cam.2017.10.033.
|
[19]
|
Y. H. Geum, Y. I. Kim and Á. A. Magreñán, A biparametric extension of King's fourth-order methods and their dynamics, Appl. Math. Comput., 282 (2016), 254-275.
doi: 10.1016/j.amc.2016.02.020.
|
[20]
|
Y. H. Geum, Y. I. Kim and Á. A. Magreñán, A study of dynamics via Mobius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions, J. Comput. Appl. Math., 344 (2018), 608-623.
doi: 10.1016/j.cam.2018.06.006.
|
[21]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[22]
|
D. Gulick, Encounters with Chaos, McGraw-Hill Inc., 1992.
|
[23]
|
A. V. Holden, Chaos, Princeton University Press, Princeton, New Jersey, 1986.
|
[24]
|
H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach., 21 (1974), 643-651.
doi: 10.1145/321850.321860.
|
[25]
|
Á. A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods, Appl. Math. Comput., 233 (2014), 29-38.
doi: 10.1016/j.amc.2014.01.037.
|
[26]
|
A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods, John Wiley & Sons, New York, 2008.
doi: 10.1002/9783527617548.
|
[27]
|
B. Neta, M. Scott and C. Chun, Basin attractors for various methods for multiple roots, Appl. Math. Comput., 218 (2012), 5043-5066.
doi: 10.1016/j.amc.2011.10.071.
|
[28]
|
J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Classics in Applied Mathematics, 30, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
doi: 10.1137/1.9780898719468.
|
[29]
|
H. Peitgen and P. Richter, The Beauty of Fractals. Images of Complex Dynamical Systems, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61717-1.
|
[30]
|
X. Wang, T. Zhang and Y. Qin, Efficient two-step derivative-free iterative methods with memory and their dynamics, Int. J. Comput. Math., 93 (2016), 1423-1446.
doi: 10.1080/00207160.2015.1056168.
|
[31]
|
S. Wolfram, The Mathematica Book, Wolfram Media, Inc., Champaign, 2003.
|
[32]
|
X. Zhou, X. Chen and Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations, Appl. Math. Comput., 219 (2013), 6030-6038.
doi: 10.1016/j.amc.2012.12.041.
|