• Previous Article
    Approximation of stationary statistical properties of the three dimensional autonomous planetary geostrophic equations of large-scale ocean circulation
  • DCDS-B Home
  • This Issue
  • Next Article
    Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise
August  2020, 25(8): 3171-3181. doi: 10.3934/dcdsb.2020056

Global attraction in a system of delay differential equations via compact and convex sets

Departamento de Estatística, Análise Matemática e Optimización and Instituto de Matemáticas, Universidade de Santiago de Compostela, Facultade de Matemáticas, Campus Vida, 15782 Santiago de Compostela, Spain

Received  May 2019 Published  August 2020 Early access  February 2020

We provide sufficient conditions for a concrete type of systems of delay differential equations (DDEs) to have a global attractor. The principal idea is based on a particular type of global attraction in difference equations in terms of nested, convex and compact sets. We prove that the solutions of the system of DDEs inherit the convergence to the equilibrium from an associated discrete dynamical system.

Citation: Sebastián Buedo-Fernández. Global attraction in a system of delay differential equations via compact and convex sets. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3171-3181. doi: 10.3934/dcdsb.2020056
References:
[1]

H. A. El-Morshedy and V. Jiménez López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.

[2]

H. A. El-Morshedy and A. Ruiz-Herrera, Geometric methods of global attraction in systems of delay differential equations, J. Differential Equations, 263 (2017), 5968-5986.  doi: 10.1016/j.jde.2017.07.001.

[3]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[4]

A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynam. Report. Expositions Dynam. Systems (N.S.) (eds. C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther), Springer, Berlin, 1 (1992), 164–224.

[5]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.

[6]

E. Liz and A. Ruiz-Herrera, Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback, J. Differential Equations, 255 (2013), 4244-4266.  doi: 10.1016/j.jde.2013.08.007.

[7]

E. Liz and A. Ruiz-Herrera, Addendum to Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback" [J. Differential Equations, 255 (2013), 4244{4266], J. Differential Equations, 257 (2014), 1307{1309. doi: 10.1016/j.jde.2014.05.010.

[8]

E. Liz and A. Ruiz-Herrera, Global dynamics of delay equations for populations with competition among immature individuals, J. Differential Equations, 260 (2016), 5926-5955.  doi: 10.1016/j.jde.2015.12.020.

[9]

J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation, Ann. Mat. Pura Appl., 145 (1986), 33-128.  doi: 10.1007/BF01790539.

[10]

F. A. Valentine, Convex Sets, Robert E. Krieger Publishing Co., New York, 1976.

[11]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.

show all references

References:
[1]

H. A. El-Morshedy and V. Jiménez López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.

[2]

H. A. El-Morshedy and A. Ruiz-Herrera, Geometric methods of global attraction in systems of delay differential equations, J. Differential Equations, 263 (2017), 5968-5986.  doi: 10.1016/j.jde.2017.07.001.

[3]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[4]

A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynam. Report. Expositions Dynam. Systems (N.S.) (eds. C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther), Springer, Berlin, 1 (1992), 164–224.

[5]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.

[6]

E. Liz and A. Ruiz-Herrera, Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback, J. Differential Equations, 255 (2013), 4244-4266.  doi: 10.1016/j.jde.2013.08.007.

[7]

E. Liz and A. Ruiz-Herrera, Addendum to Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback" [J. Differential Equations, 255 (2013), 4244{4266], J. Differential Equations, 257 (2014), 1307{1309. doi: 10.1016/j.jde.2014.05.010.

[8]

E. Liz and A. Ruiz-Herrera, Global dynamics of delay equations for populations with competition among immature individuals, J. Differential Equations, 260 (2016), 5926-5955.  doi: 10.1016/j.jde.2015.12.020.

[9]

J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation, Ann. Mat. Pura Appl., 145 (1986), 33-128.  doi: 10.1007/BF01790539.

[10]

F. A. Valentine, Convex Sets, Robert E. Krieger Publishing Co., New York, 1976.

[11]

T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.

Figure 1.  The origin is not a strong attractor
Figure 2.  A possible set $ Q_{x, v, \varepsilon} $ is represented in gray. Distances are pointed out with dashed green lines. A particular $ v^* $ satisfying the hypotheses of the last assertion of Lemma 3.1 is also depicted (color figure online)
Figure 3.  Possible behaviour of $ x(t, \phi) $ (blue). The boundary of the set $ K_2 $ is represented in black. The boundaries of $ K_{2, \mu} $, for some values $ \mu>1 $ are represented in grey. The blue arrow represents $ x'(t, \phi) $, which "points to the interior" of a $ K_{2, \mu} $. $ f(K_2) $ is represented in red. The equilibrium $ z_* $ is depicted as a point inside $ f(K_2) $ (color figure online)
[1]

Xiaolei Dong, Yuming Qin. Strong pullback attractors for a nonclassical diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021313

[2]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[3]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[4]

Eduardo Henrique Gomes Tavares, Vando Narciso. Attractors for a class of extensible beams with strong nonlinear damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022013

[5]

Michael Dellnitz, Mirko Hessel-Von Molo, Adrian Ziessler. On the computation of attractors for delay differential equations. Journal of Computational Dynamics, 2016, 3 (1) : 93-112. doi: 10.3934/jcd.2016005

[6]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146

[7]

Yue Sun, Zhijian Yang. Strong attractors and their robustness for an extensible beam model with energy damping. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3101-3129. doi: 10.3934/dcdsb.2021175

[8]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[9]

Hiroshi Inoue, Kei Matsuura, Mitsuharu Ôtani. Strong solutions of magneto-micropolar fluid equation. Conference Publications, 2003, 2003 (Special) : 439-448. doi: 10.3934/proc.2003.2003.439

[10]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[11]

Kei Matsuura, Mitsuharu Otani. Exponential attractors for a quasilinear parabolic equation. Conference Publications, 2007, 2007 (Special) : 713-720. doi: 10.3934/proc.2007.2007.713

[12]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[13]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221

[16]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1695-1724. doi: 10.3934/dcdsb.2021107

[17]

Hongyong Cui, Mirelson M. Freitas, José A. Langa. On random cocycle attractors with autonomous attraction universes. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3379-3407. doi: 10.3934/dcdsb.2017142

[18]

Björn Birnir, Nils Svanstedt. Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 53-74. doi: 10.3934/dcds.2004.10.53

[19]

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov. Strong convergence of trajectory attractors for reaction–diffusion systems with random rapidly oscillating terms. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2419-2443. doi: 10.3934/cpaa.2020106

[20]

Messoud Efendiev, Alain Miranville. Finite dimensional attractors for reaction-diffusion equations in $R^n$ with a strong nonlinearity. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 399-424. doi: 10.3934/dcds.1999.5.399

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (306)
  • HTML views (256)
  • Cited by (0)

Other articles
by authors

[Back to Top]