\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global attraction in a system of delay differential equations via compact and convex sets

Abstract Full Text(HTML) Figure(3) Related Papers Cited by
  • We provide sufficient conditions for a concrete type of systems of delay differential equations (DDEs) to have a global attractor. The principal idea is based on a particular type of global attraction in difference equations in terms of nested, convex and compact sets. We prove that the solutions of the system of DDEs inherit the convergence to the equilibrium from an associated discrete dynamical system.

    Mathematics Subject Classification: Primary: 34K20, 37C70, 52A20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The origin is not a strong attractor

    Figure 2.  A possible set $ Q_{x, v, \varepsilon} $ is represented in gray. Distances are pointed out with dashed green lines. A particular $ v^* $ satisfying the hypotheses of the last assertion of Lemma 3.1 is also depicted (color figure online)

    Figure 3.  Possible behaviour of $ x(t, \phi) $ (blue). The boundary of the set $ K_2 $ is represented in black. The boundaries of $ K_{2, \mu} $, for some values $ \mu>1 $ are represented in grey. The blue arrow represents $ x'(t, \phi) $, which "points to the interior" of a $ K_{2, \mu} $. $ f(K_2) $ is represented in red. The equilibrium $ z_* $ is depicted as a point inside $ f(K_2) $ (color figure online)

  • [1] H. A. El-Morshedy and V. Jiménez López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.
    [2] H. A. El-Morshedy and A. Ruiz-Herrera, Geometric methods of global attraction in systems of delay differential equations, J. Differential Equations, 263 (2017), 5968-5986.  doi: 10.1016/j.jde.2017.07.001.
    [3] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.
    [4] A. F. Ivanov and A. N. Sharkovsky, Oscillations in singularly perturbed delay equations, in Dynam. Report. Expositions Dynam. Systems (N.S.) (eds. C. K. R. T. Jones, U. Kirchgraber and H.-O. Walther), Springer, Berlin, 1 (1992), 164–224.
    [5] E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.
    [6] E. Liz and A. Ruiz-Herrera, Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback, J. Differential Equations, 255 (2013), 4244-4266.  doi: 10.1016/j.jde.2013.08.007.
    [7] E. Liz and A. Ruiz-Herrera, Addendum to Attractivity, multistability, and bifurcation in delayed Hopfield's model with non-monotonic feedback" [J. Differential Equations, 255 (2013), 4244{4266], J. Differential Equations, 257 (2014), 1307{1309. doi: 10.1016/j.jde.2014.05.010.
    [8] E. Liz and A. Ruiz-Herrera, Global dynamics of delay equations for populations with competition among immature individuals, J. Differential Equations, 260 (2016), 5926-5955.  doi: 10.1016/j.jde.2015.12.020.
    [9] J. Mallet-Paret and R. D. Nussbaum, Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation, Ann. Mat. Pura Appl., 145 (1986), 33-128.  doi: 10.1007/BF01790539.
    [10] F. A. Valentine, Convex Sets, Robert E. Krieger Publishing Co., New York, 1976.
    [11] T. Yi and X. Zou, Map dynamics versus dynamics of associated delay reaction-diffusion equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 2955-2973.  doi: 10.1098/rspa.2009.0650.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(314) PDF downloads(320) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return