-
Previous Article
On the 1D modeling of fluid flowing through a Junction
- DCDS-B Home
- This Issue
-
Next Article
Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media
Exact controllability of the linear Zakharov-Kuznetsov equation
1. | School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, China |
2a. | TAG_SUP Université du Littoral Côte d'Opale, Laboratoire de Mathématiques Pures et Appliquées J. Liouville, BP 699, F-62228 Calais, France |
2b. | TAG_SUP CNRS FR 2956, France |
We consider the linear Zakharov-Kuznetsov equation on a rectangle with a left Dirichlet boundary control. Using the flatness approach, we prove the null controllability of that equation and provide a space of analytic reachable states.
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
E. Cerpa,
Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields, 4 (2014), 45-99.
doi: 10.3934/mcrf.2014.4.45. |
[3] |
M. Chen,
Unique continuation property for the Zakharov-Kuznetsov equation, Comput. Math. Appl., 77 (2019), 1273-1281.
doi: 10.1016/j.camwa.2018.11.002. |
[4] |
G. G. Doronin and N. A. Larkin,
Stabilization for the linear Zakharov-Kuznetsov equation without critical size restrictions, J. Math. Anal. Appl., 428 (2015), 337-355.
doi: 10.1016/j.jmaa.2015.03.010. |
[5] |
G. G. Doronin and N. A. Larkin,
Stabilization of regular solutions for the Zakharov-Kuznetsov equation posed on bounded rectangles and on a strip, Proc. Edinb. Math. Soc., 58 (2015), 661-682.
doi: 10.1017/S0013091514000248. |
[6] |
A. V. Faminski,
The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equ., 31 (1995), 1002-1012.
|
[7] |
A. V. Faminskii,
Initial-boundary value problems in a rectangle for two-dimensional Zakharov-Kuznetsov equation, J. Math. Anal. Appl., 463 (2018), 760-793.
doi: 10.1016/j.jmaa.2018.03.048. |
[8] |
O. Glass and S. Guerrero,
Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptotic Analysis, 60 (2008), 61-100.
doi: 10.3233/ASY-2008-0900. |
[9] |
C. Laurent and L. Rosier, Exact controllability of nonlinear heat equations in spaces of analytic functions, preprint, arXiv: 1812.06637v1. |
[10] |
F. Linares and J.-C. Saut,
The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dynam. Syst. A, 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[11] |
F. Linares, A. Pastor and J.-C. Saut,
Well-posedness for the ZK equation in a cylinder and on the background of a KdV Soliton, Commun. PDEs, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[12] |
P. Martin, L. Rosier and P. Rouchon,
On the reachable states for the boundary control of the heat equation, Appl. Math. Res. Express. AMRX, 2016 (2016), 181-216.
doi: 10.1093/amrx/abv013. |
[13] |
P. Martin, I. Rivas, L. Rosier and P. Rouchon,
Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., 57 (2019), 2467-2486.
doi: 10.1137/18M1181390. |
[14] |
G. Perla-Menzala, L. Rosier, J.-C. Saut and R. Temam, Boundary control of the Zakharov-Kuznetsov equation, in preparation. |
[15] |
L. Rosier,
Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[16] |
L. Rosier,
Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[17] |
L. Rosier and B.-Y. Zhang,
Control and stabilization of the Korteweg-de Vries equation: recent progresses, J. Syst. Sci. Complex., 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2. |
[18] |
J.-C. Saut and R. Temam,
An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Diff. Equations, 15 (2010), 1001-1031.
|
[19] |
J.-C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, Journal of Mathematical Physics, 53 (2012), 115612, 29pp.
doi: 10.1063/1.4752102. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
![]() ![]() |
[2] |
E. Cerpa,
Control of a Korteweg-de Vries equation: A tutorial, Math. Control Relat. Fields, 4 (2014), 45-99.
doi: 10.3934/mcrf.2014.4.45. |
[3] |
M. Chen,
Unique continuation property for the Zakharov-Kuznetsov equation, Comput. Math. Appl., 77 (2019), 1273-1281.
doi: 10.1016/j.camwa.2018.11.002. |
[4] |
G. G. Doronin and N. A. Larkin,
Stabilization for the linear Zakharov-Kuznetsov equation without critical size restrictions, J. Math. Anal. Appl., 428 (2015), 337-355.
doi: 10.1016/j.jmaa.2015.03.010. |
[5] |
G. G. Doronin and N. A. Larkin,
Stabilization of regular solutions for the Zakharov-Kuznetsov equation posed on bounded rectangles and on a strip, Proc. Edinb. Math. Soc., 58 (2015), 661-682.
doi: 10.1017/S0013091514000248. |
[6] |
A. V. Faminski,
The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equ., 31 (1995), 1002-1012.
|
[7] |
A. V. Faminskii,
Initial-boundary value problems in a rectangle for two-dimensional Zakharov-Kuznetsov equation, J. Math. Anal. Appl., 463 (2018), 760-793.
doi: 10.1016/j.jmaa.2018.03.048. |
[8] |
O. Glass and S. Guerrero,
Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit, Asymptotic Analysis, 60 (2008), 61-100.
doi: 10.3233/ASY-2008-0900. |
[9] |
C. Laurent and L. Rosier, Exact controllability of nonlinear heat equations in spaces of analytic functions, preprint, arXiv: 1812.06637v1. |
[10] |
F. Linares and J.-C. Saut,
The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dynam. Syst. A, 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547. |
[11] |
F. Linares, A. Pastor and J.-C. Saut,
Well-posedness for the ZK equation in a cylinder and on the background of a KdV Soliton, Commun. PDEs, 35 (2010), 1674-1689.
doi: 10.1080/03605302.2010.494195. |
[12] |
P. Martin, L. Rosier and P. Rouchon,
On the reachable states for the boundary control of the heat equation, Appl. Math. Res. Express. AMRX, 2016 (2016), 181-216.
doi: 10.1093/amrx/abv013. |
[13] |
P. Martin, I. Rivas, L. Rosier and P. Rouchon,
Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., 57 (2019), 2467-2486.
doi: 10.1137/18M1181390. |
[14] |
G. Perla-Menzala, L. Rosier, J.-C. Saut and R. Temam, Boundary control of the Zakharov-Kuznetsov equation, in preparation. |
[15] |
L. Rosier,
Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain, ESAIM Control Optim. Calc. Var., 2 (1997), 33-55.
doi: 10.1051/cocv:1997102. |
[16] |
L. Rosier,
Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var., 10 (2004), 346-380.
doi: 10.1051/cocv:2004012. |
[17] |
L. Rosier and B.-Y. Zhang,
Control and stabilization of the Korteweg-de Vries equation: recent progresses, J. Syst. Sci. Complex., 22 (2009), 647-682.
doi: 10.1007/s11424-009-9194-2. |
[18] |
J.-C. Saut and R. Temam,
An initial boundary-value problem for the Zakharov-Kuznetsov equation, Adv. Diff. Equations, 15 (2010), 1001-1031.
|
[19] |
J.-C. Saut, R. Temam and C. Wang, An initial and boundary-value problem for the Zakharov-Kuznestov equation in a bounded domain, Journal of Mathematical Physics, 53 (2012), 115612, 29pp.
doi: 10.1063/1.4752102. |
[1] |
Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145 |
[2] |
Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047 |
[3] |
Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005 |
[4] |
Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074 |
[5] |
Axel Grünrock, Sebastian Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2061-2068. doi: 10.3934/dcds.2014.34.2061 |
[6] |
Felipe Linares, Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 547-565. doi: 10.3934/dcds.2009.24.547 |
[7] |
Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075 |
[8] |
Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087 |
[9] |
Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021036 |
[10] |
Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143 |
[11] |
José R. Quintero, Alex M. Montes. On the exact controllability and the stabilization for the Benney-Luke equation. Mathematical Control and Related Fields, 2020, 10 (2) : 275-304. doi: 10.3934/mcrf.2019039 |
[12] |
Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020 |
[13] |
Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure and Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953 |
[14] |
Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023 |
[15] |
Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations and Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011 |
[16] |
Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91 |
[17] |
André da Rocha Lopes, Juan Límaco. Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains. Evolution Equations and Control Theory, 2022, 11 (3) : 749-779. doi: 10.3934/eect.2021024 |
[18] |
Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087 |
[19] |
Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control and Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743 |
[20] |
Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]