# American Institute of Mathematical Sciences

January  2021, 26(1): 401-414. doi: 10.3934/dcdsb.2020083

## On a singularly perturbed semi-linear problem with Robin boundary conditions

 1 Institute for Advanced Study in Mathematics, Harbin Institute of Technology, Harbin 150001, China 2 Institute of Applied Mathematical Sciences and National Center for Theoretical Sciences (NCTS), National Taiwan University, Taipei 10617, Taiwan 3 Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

Received  September 2019 Published  January 2020

This paper is concerned with a semi-linear elliptic problem with Robin boundary condition:
 $$$\left\{\begin{array}{lll} \varepsilon \Delta w-\lambda w^{1+\chi} = 0, &\text{in} \ \Omega\\ \nabla w \cdot \vec{n}+\gamma w = 0, & \text{on} \ \partial \Omega \end{array}\right.$$ ~~~~~~~~~~~~~~~~~~~~(*)$
where
 $\Omega \subset {\mathbb R}^N (N\geq 1)$
is a bounded domain with smooth boundary,
 $\vec{n}$
denotes the unit outward normal vector of
 $\partial \Omega$
and
 $\gamma \in {\mathbb R}/\{0\}$
.
 $\varepsilon$
and
 $\lambda$
are positive constants. The problem (*) is derived from the well-known singular Keller-Segel system. When
 $\gamma>0$
, we show there is only trivial solution
 $w = 0$
. When
 $\gamma<0$
and
 $\Omega = B_R(0)$
is a ball, we show that problem (*) has a non-constant solution which converges to zero uniformly as
 $\varepsilon$
tends to zero. The main idea of this paper is to transform the Robin problem (*) to a nonlocal Dirichelt problem by a Cole-Hopf type transformation and then use the shooting method to obtain the existence of the transformed nonlocal Dirichlet problem. With the results for (*), we get the existence of non-constant stationary solutions to the original singular Keller-Segel system.
Citation: Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083
##### References:

show all references

##### References:
 [1] Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027 [2] José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376 [3] Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 [4] Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 [5] Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013 [6] Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 [7] Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340 [8] Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 [9] Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 [10] Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 [11] Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316 [12] Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 [13] Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003 [14] Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 [15] Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 [16] Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001 [17] Wenxiong Chen, Congming Li, Shijie Qi. A Hopf lemma and regularity for fractional $p$-Laplacians. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3235-3252. doi: 10.3934/dcds.2020034 [18] Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021003 [19] Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 [20] Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170