In this paper, we consider the Zakharov-Kuznetsov equation in 3D, with a dissipative term of order $ 0 < \alpha \leq 2 $ in the $ x $ direction. We prove that the problem is locally well-posed in $ H^{s}( { I\!\!R}^3) $, for $ s > 1-\frac{\alpha}{2} $, and by an a priori energy estimate, we prove that the problem is globally well-posed in $ H^{1}( { I\!\!R}^3) $.
Citation: |
[1] |
O. V. Besov, V. P. Il'in and S. M. Nikolskii, Integral Representations of Functions and Imbedding Theorems, Vol. 1, New York-Toronto, Ont.-London, 1978.
![]() ![]() |
[2] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107-156.
doi: 10.1007/BF01896020.![]() ![]() ![]() |
[3] |
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. Part II: The KdV-equation, Geom. Funct. Anal., 3 (1993), 209-262.
doi: 10.1007/BF01895688.![]() ![]() ![]() |
[4] |
J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3 (1993), 315-341.
doi: 10.1007/BF01896259.![]() ![]() ![]() |
[5] |
M. Darwich, On the well-posedness for Kadomtsev-Petviashvili-Burgers I equation, J. Differential Equations, 253 (2012), 1584-1603.
doi: 10.1016/j.jde.2012.05.013.![]() ![]() ![]() |
[6] |
A. V. Faminskiĭ, The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equations, 31 (1995), 1002-1012.
![]() ![]() |
[7] |
J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki, Vol. 1994/95, Astérisque, 237 (1996), 163-187.
![]() ![]() |
[8] |
J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal., 151 (1997), 384-436.
doi: 10.1006/jfan.1997.3148.![]() ![]() ![]() |
[9] |
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.
doi: 10.1006/jfan.1995.1119.![]() ![]() ![]() |
[10] |
A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061-2068.
doi: 10.3934/dcds.2014.34.2061.![]() ![]() ![]() |
[11] |
H. Hirayama, Local and global well-posedness for the 2D Zakharov-Kuznetsov-Burgers equation in low regularity Sobolev space, J. Differential Equations, 267 (2019), 4089–4116, arXiv: 1806.01039.
doi: 10.1016/j.jde.2019.04.030.![]() ![]() ![]() |
[12] |
R. J. Iório Jr. and W. V. L. Nunes, On equations of KP-type, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 725-743.
doi: 10.1017/S0308210500021740.![]() ![]() ![]() |
[13] |
C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.
doi: 10.1090/S0894-0347-96-00200-7.![]() ![]() ![]() |
[14] |
C. E. Kenig, G. Ponce and L. Vega, On the (generalized) Korteweg-de-Vries equation, Duke Math. J., 59 (1989), 585-610.
doi: 10.1215/S0012-7094-89-05927-9.![]() ![]() ![]() |
[15] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
[16] |
E. A. Kuznetsov and V. E. Zakharov, Three-dimensional solitons, Zhurnal Eksperimental'noi i Teroreticheskoi Fiziki, 66 (1974), 594-597.
![]() |
[17] |
F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323-1339.
doi: 10.1137/080739173.![]() ![]() ![]() |
[18] |
F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.
doi: 10.3934/dcds.2009.24.547.![]() ![]() ![]() |
[19] |
L. Molinet, The Cauchy problem for the (generalized) Kadomtsev-Petviashvili-Burgers equation, Differential Integral Equations, 13 (2000), 189-216.
![]() ![]() |
[20] |
L. Molinet, On the asymptotic behavior of solutions to the (generalized) Kadomtsev-Petviashvili-Burgers equations, J. Differential Equations, 152 (1999), 30-74.
doi: 10.1006/jdeq.1998.3522.![]() ![]() ![]() |
[21] |
L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.
doi: 10.1016/j.anihpc.2013.12.003.![]() ![]() ![]() |
[22] |
L. Molinet and F. Ribaud, On the low regularity of the Korteweg-de Vries-Burgers equation, Int. Math. Res. Not., 37 (2002), 1979-2005.
doi: 10.1155/S1073792802112104.![]() ![]() ![]() |
[23] |
E. Ott and N. Sudan, Damping of solitary waves, Phys. Fluids, 13 (1970), 1432–1434.
doi: 10.1063/1.1693097.![]() ![]() |
[24] |
F. Ribaud and S. Vento, Well-posedness results for the 3D Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289–2304.
![]() |
[25] |
J. C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J., 42 (1993), 1011-1026.
doi: 10.1512/iumj.1993.42.42047.![]() ![]() ![]() |
[26] |
N. Tzvetkov, Remark on the local regularity of Kadomtsev-Petviashvili-II equation, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 709-712.
doi: 10.1016/S0764-4442(98)80035-9.![]() ![]() ![]() |
[27] |
G. Zihua and W. Baoxiang, Global well-posedness and inviscid limit for the Korteweg-de-Vries-Burgers equation, J. Differential Equations, 246 (2009), 3864-3901.
doi: 10.1016/j.jde.2009.03.006.![]() ![]() ![]() |