November  2020, 25(11): 4127-4164. doi: 10.3934/dcdsb.2020091

Analyzing plasmid segregation: Existence and stability of the eigensolution in a non-compact case

1. 

Department of Mathematics, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany

2. 

Present address: Infection Analytics Program, Kirby Institute, UNSW Sydney, Wallace Wurth Building, High St, Kensington NSW 2052, Australia

2. 

Institute of Computational Biology, HelmholtzZentrum München - German Research Center for, Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

* Corresponding author: Eva Stadler

Received  May 2019 Revised  November 2019 Published  November 2020 Early access  April 2020

Fund Project: This work is part of the published dissertation thesis "Transport equations and plasmid-induced cellular heterogeneity" by ES (https://mediatum.ub.tum.de/1469742?id=1469742).
This work was funded by the German Research Foundation (DFG) priority program SPP1617 "Phenotypic heterogeneity and sociobiology of bacterial populations" (DFG MU 2339/2-2).

We study the distribution of autonomously replicating genetic elements, so-called plasmids, in a bacterial population. When a bacterium divides, the plasmids are segregated between the two daughter cells. We analyze a model for a bacterial population structured by their plasmid content. The model contains reproduction of both plasmids and bacteria, death of bacteria, and the distribution of plasmids at cell division. The model equation is a growth-fragmentation-death equation with an integral term containing a singular kernel. As we are interested in the long-term distribution of the plasmids, we consider the associated eigenproblem. Due to the singularity of the integral kernel, we do not have compactness. Thus, standard approaches to show the existence of an eigensolution like the Theorem of Krein-Rutman cannot be applied. We show the existence of an eigensolution using a fixed point theorem and the Laplace transform. The long-term dynamics of the model is analyzed using the Generalized Relative Entropy method.

Citation: Eva Stadler, Johannes Müller. Analyzing plasmid segregation: Existence and stability of the eigensolution in a non-compact case. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4127-4164. doi: 10.3934/dcdsb.2020091
References:
[1]

O. Arino, A survey of structured cell population dynamics, Acta Biotheor., 43 (1995), 3-25.  doi: 10.1007/BF00709430.

[2]

K. B. Athreya and P. E. Ney, Branching Processes, Die Grundlehren der mathematischen Wissenschaften, vol. 196, Springer-Verlag, New York-Heidelberg, 1972. doi: 10.1007/978-3-642-65371-1.

[3]

T. Beebee and G. Rowe, An Introduction to Molecular Ecology, 2nd edition, Oxford University Press, Oxford University Press, 2008.

[4]

R. Bellman, Asymptotic series for the solutions of linear differential-difference equations, Rend. Circ. Mat. Palermo (2), 7 (1958), 261-269.

[5]

W. E. BentleyN. MirjaliliD. C. AndersenR. H. Davis and D. S. Kompala, Plasmid-encoded protein: The principal factor in the "metabolic burden" associated with recombinant bacteria, Biotechnol. Bioeng., 35 (1990), 668-681.  doi: 10.1002/bit.260350704.

[6]

V. I. Bogachev, Measure Theory, vol. 1, Springer-Verlag, Berlin, 2007. doi: 10.1007/978-3-540-34514-5.

[7]

À. Calsina and J. Saldaña, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364.  doi: 10.1007/BF00176377.

[8]

V. CalvezM. Doumic and P. Gabriel, Self-similarity in a general aggregation-fragmentation problem: Application to fitness analysis, J. Math. Pures Appl., 98 (2012), 1-27.  doi: 10.1016/j.matpur.2012.01.004.

[9]

F. CampilloN. Champagnat and C. Fritsch, Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models, J. Math. Biol., 73 (2016), 1781-1821.  doi: 10.1007/s00285-016-1012-6.

[10]

N. Casali and A. Preston, E. coli Plasmid Vectors: Methods and Applications, Methods in Molecular Biology, vol. 235, Humana Press, Totowa, NJ, 2003. doi: 10.1385/1592594093.

[11]

D. P. Clark and N. J. Pazdernik, Biotechnology, 2$^nd$ edition, Elsevier AP Cell Press, Amsterdam, 2015.

[12]

J. M. Cushing, An Introduction to Structured Population Dynamics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.

[13]

G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer-Verlag, New York-Heidelberg, 1974. doi: 10.1007/978-3-642-65690-3.

[14]

M. Doumic, Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2 (2007), 121-152.  doi: 10.1051/mmnp:2007006.

[15]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.  doi: 10.1142/S021820251000443X.

[16]

S. M. Focardi and F. J. Fabozzi, The Mathematics of Financial Modeling and Investment Management, 1$^st$ edition, Frank J. Fabozzi Series, John Wiley & Sons, 2004.

[17]

V. V. GanusovA. V. Bril'kov and N. S. Pechurkin, Mathematical modeling of population dynamics of unstable plasmid-bearing bacteria strains during continuous cultivation in a chemostat, Biofizika, 45 (2000), 908-914. 

[18]

L. M. Graves, The Theory of Functions of Real Variables, 2$^nd$ edition, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956.

[19]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 3$^rd$ edition, Graduate studies in mathematics, vol. 40, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/gsm/040.

[20]

H. J. A. M. Heijmans, The dynamical behaviour of the age-size-distribution of a dell population, in The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath., vol. 68, Springer, Berlin, 1986,185–202. doi: 10.1007/978-3-662-13159-6_5.

[21]

H. Kuo and J. D. Keasling, A Monte Carlo simulation of plasmid replication during the bacterial division cycle, Biotechnol. Bioeng., 52 (1996), 633-647.  doi: 10.1002/(SICI)1097-0290(19961220)52:6<633::AID-BIT1>3.0.CO;2-P.

[22]

P. Magal and S. Ruan, Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics, vol. 1936, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78273-5.

[23]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer, Berlin, Heidelberg, 1986.

[24]

P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16 (2006), 1125-1153.  doi: 10.1142/S0218202506001480.

[25]

P. MichelS. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl., 84 (2005), 1235-1260.  doi: 10.1016/j.matpur.2005.04.001.

[26]

S. Million-Weaver and M. Camps, Mechanisms of plasmid segregation: Have multicopy plasmids been overlooked?, Plasmid, 75 (2014), 27-36.  doi: 10.1016/j.plasmid.2014.07.002.

[27]

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 849-898.  doi: 10.1016/j.anihpc.2015.01.007.

[28]

J. Müller, K. Münch, B. Koopmann, E. Stadler, L. Roselius, D. Jahn and R. Münch, Plasmid segregation and accumulation, preprint, arXiv: 1701.03448.

[29]

K. M. MünchJ. MüllerS. WieneckeS. BergmannS. HeyberR. Biedendieck and et al., Polar fixation of plasmids during recombinant protein production in bacillus megaterium results in population heterogeneity, Applied Environmental Microbiology, 81 (2015), 5976-5986.  doi: 10.1128/AEM.00807-15.

[30]

R. P. NovickR. C. ClowesS. N. CohenR. CurtissN. Datta and S. Falkow, Uniform nomenclature for bacterial plasmids: A proposal, Microbiology and Molecular Biology Reviews, 40 (1976), 168-189.  doi: 10.1128/MMBR.40.1.168-189.1976.

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[32]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. doi: 10.1007/978-3-7643-7842-4.

[33]

J. PoglianoT. Q. HoZ. Zhong and D. R. Helinski, Multicopy plasmids are clustered and localized in Escherichia coli, PNAS, 98 (2001), 4486-4491.  doi: 10.1073/pnas.081075798.

[34]

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018.

[35]

S. Srivastava, Genetics of Bacteria, Springer, India, 2013. doi: 10.1007/978-81-322-1090-0.

[36]

E. Stadler, Eigensolutions and spectral analysis of a model for vertical gene transfer of plasmids, J. Math. Biol., 78 (2019), 1299-1330.  doi: 10.1007/s00285-018-1310-2.

[37]

F. M. Stewart and B. R. Levin, The population biology of bacterial plasmids: A priori conditions for the existence of conjugationally transmitted factors, Genetics, 87 (1977), 209-228. 

[38]

G. F. Webb, Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology, Lecture Notes in Math., vol. 1936, Springer, Berlin, 2008, 1–49. doi: 10.1007/978-3-540-78273-5_1.

[39]

D. G. Zill and P. Shanahan, A First Course in Complex Analysis with Applications, Jones and Bartlett, Boston, 2003.

show all references

References:
[1]

O. Arino, A survey of structured cell population dynamics, Acta Biotheor., 43 (1995), 3-25.  doi: 10.1007/BF00709430.

[2]

K. B. Athreya and P. E. Ney, Branching Processes, Die Grundlehren der mathematischen Wissenschaften, vol. 196, Springer-Verlag, New York-Heidelberg, 1972. doi: 10.1007/978-3-642-65371-1.

[3]

T. Beebee and G. Rowe, An Introduction to Molecular Ecology, 2nd edition, Oxford University Press, Oxford University Press, 2008.

[4]

R. Bellman, Asymptotic series for the solutions of linear differential-difference equations, Rend. Circ. Mat. Palermo (2), 7 (1958), 261-269.

[5]

W. E. BentleyN. MirjaliliD. C. AndersenR. H. Davis and D. S. Kompala, Plasmid-encoded protein: The principal factor in the "metabolic burden" associated with recombinant bacteria, Biotechnol. Bioeng., 35 (1990), 668-681.  doi: 10.1002/bit.260350704.

[6]

V. I. Bogachev, Measure Theory, vol. 1, Springer-Verlag, Berlin, 2007. doi: 10.1007/978-3-540-34514-5.

[7]

À. Calsina and J. Saldaña, A model of physiologically structured population dynamics with a nonlinear individual growth rate, J. Math. Biol., 33 (1995), 335-364.  doi: 10.1007/BF00176377.

[8]

V. CalvezM. Doumic and P. Gabriel, Self-similarity in a general aggregation-fragmentation problem: Application to fitness analysis, J. Math. Pures Appl., 98 (2012), 1-27.  doi: 10.1016/j.matpur.2012.01.004.

[9]

F. CampilloN. Champagnat and C. Fritsch, Links between deterministic and stochastic approaches for invasion in growth-fragmentation-death models, J. Math. Biol., 73 (2016), 1781-1821.  doi: 10.1007/s00285-016-1012-6.

[10]

N. Casali and A. Preston, E. coli Plasmid Vectors: Methods and Applications, Methods in Molecular Biology, vol. 235, Humana Press, Totowa, NJ, 2003. doi: 10.1385/1592594093.

[11]

D. P. Clark and N. J. Pazdernik, Biotechnology, 2$^nd$ edition, Elsevier AP Cell Press, Amsterdam, 2015.

[12]

J. M. Cushing, An Introduction to Structured Population Dynamics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.

[13]

G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer-Verlag, New York-Heidelberg, 1974. doi: 10.1007/978-3-642-65690-3.

[14]

M. Doumic, Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., 2 (2007), 121-152.  doi: 10.1051/mmnp:2007006.

[15]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., 20 (2010), 757-783.  doi: 10.1142/S021820251000443X.

[16]

S. M. Focardi and F. J. Fabozzi, The Mathematics of Financial Modeling and Investment Management, 1$^st$ edition, Frank J. Fabozzi Series, John Wiley & Sons, 2004.

[17]

V. V. GanusovA. V. Bril'kov and N. S. Pechurkin, Mathematical modeling of population dynamics of unstable plasmid-bearing bacteria strains during continuous cultivation in a chemostat, Biofizika, 45 (2000), 908-914. 

[18]

L. M. Graves, The Theory of Functions of Real Variables, 2$^nd$ edition, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956.

[19]

R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, 3$^rd$ edition, Graduate studies in mathematics, vol. 40, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/gsm/040.

[20]

H. J. A. M. Heijmans, The dynamical behaviour of the age-size-distribution of a dell population, in The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomath., vol. 68, Springer, Berlin, 1986,185–202. doi: 10.1007/978-3-662-13159-6_5.

[21]

H. Kuo and J. D. Keasling, A Monte Carlo simulation of plasmid replication during the bacterial division cycle, Biotechnol. Bioeng., 52 (1996), 633-647.  doi: 10.1002/(SICI)1097-0290(19961220)52:6<633::AID-BIT1>3.0.CO;2-P.

[22]

P. Magal and S. Ruan, Structured Population Models in Biology and Epidemiology, Lecture Notes in Mathematics, vol. 1936, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-78273-5.

[23]

J. A. J. Metz and O. Diekmann, The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68, Springer, Berlin, Heidelberg, 1986.

[24]

P. Michel, Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., 16 (2006), 1125-1153.  doi: 10.1142/S0218202506001480.

[25]

P. MichelS. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, J. Math. Pures Appl., 84 (2005), 1235-1260.  doi: 10.1016/j.matpur.2005.04.001.

[26]

S. Million-Weaver and M. Camps, Mechanisms of plasmid segregation: Have multicopy plasmids been overlooked?, Plasmid, 75 (2014), 27-36.  doi: 10.1016/j.plasmid.2014.07.002.

[27]

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 849-898.  doi: 10.1016/j.anihpc.2015.01.007.

[28]

J. Müller, K. Münch, B. Koopmann, E. Stadler, L. Roselius, D. Jahn and R. Münch, Plasmid segregation and accumulation, preprint, arXiv: 1701.03448.

[29]

K. M. MünchJ. MüllerS. WieneckeS. BergmannS. HeyberR. Biedendieck and et al., Polar fixation of plasmids during recombinant protein production in bacillus megaterium results in population heterogeneity, Applied Environmental Microbiology, 81 (2015), 5976-5986.  doi: 10.1128/AEM.00807-15.

[30]

R. P. NovickR. C. ClowesS. N. CohenR. CurtissN. Datta and S. Falkow, Uniform nomenclature for bacterial plasmids: A proposal, Microbiology and Molecular Biology Reviews, 40 (1976), 168-189.  doi: 10.1128/MMBR.40.1.168-189.1976.

[31]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[32]

B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. doi: 10.1007/978-3-7643-7842-4.

[33]

J. PoglianoT. Q. HoZ. Zhong and D. R. Helinski, Multicopy plasmids are clustered and localized in Escherichia coli, PNAS, 98 (2001), 4486-4491.  doi: 10.1073/pnas.081075798.

[34]

R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2018.

[35]

S. Srivastava, Genetics of Bacteria, Springer, India, 2013. doi: 10.1007/978-81-322-1090-0.

[36]

E. Stadler, Eigensolutions and spectral analysis of a model for vertical gene transfer of plasmids, J. Math. Biol., 78 (2019), 1299-1330.  doi: 10.1007/s00285-018-1310-2.

[37]

F. M. Stewart and B. R. Levin, The population biology of bacterial plasmids: A priori conditions for the existence of conjugationally transmitted factors, Genetics, 87 (1977), 209-228. 

[38]

G. F. Webb, Population models structured by age, size, and spatial position, in Structured Population Models in Biology and Epidemiology, Lecture Notes in Math., vol. 1936, Springer, Berlin, 2008, 1–49. doi: 10.1007/978-3-540-78273-5_1.

[39]

D. G. Zill and P. Shanahan, A First Course in Complex Analysis with Applications, Jones and Bartlett, Boston, 2003.

Figure 1.  Numerically constructed eigenfunctions for $ \Phi(\xi) = 6\,\xi\,(1-\xi) $, $ \mu = 0.1/h $, $ b(z) = z(1-z)/h $, and different $ \beta $, viz. $ \beta = 0.45/h $ (black), $ 0.5/h $ (dark gray), and $ 0.55/h $ (light gray). The different cell division rates lead to different behavior of the eigenfunction $ \mathcal{U}(z) $ at the maximal plasmid number $ z_0 = 1 $. The eigenfunction was numerically constructed using the software R [34] as described in [36,Section 5]
[1]

Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic and Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223

[2]

Luiza H. F. Andrade, Rui F. Vigelis, Charles C. Cavalcante. A generalized quantum relative entropy. Advances in Mathematics of Communications, 2020, 14 (3) : 413-422. doi: 10.3934/amc.2020063

[3]

Mustapha Mokhtar-Kharroubi. On spectral gaps of growth-fragmentation semigroups with mass loss or death. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1293-1327. doi: 10.3934/cpaa.2022019

[4]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[5]

Jacek Banasiak, Luke O. Joel, Sergey Shindin. The discrete unbounded coagulation-fragmentation equation with growth, decay and sedimentation. Kinetic and Related Models, 2019, 12 (5) : 1069-1092. doi: 10.3934/krm.2019040

[6]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic and Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[7]

Prasanta Kumar Barik, Ankik Kumar Giri. A note on mass-conserving solutions to the coagulation-fragmentation equation by using non-conservative approximation. Kinetic and Related Models, 2018, 11 (5) : 1125-1138. doi: 10.3934/krm.2018043

[8]

Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 563-585. doi: 10.3934/dcdsb.2009.11.563

[9]

Jaroslaw Smieja, Marzena Dolbniak. Sensitivity of signaling pathway dynamics to plasmid transfection and its consequences. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1207-1222. doi: 10.3934/mbe.2016039

[10]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[11]

José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023

[12]

Lonnie Turpin, Jr., Kelli Bruchhaus, Keith Credo, Gerard Ornas, Jr.. Relative entropy and envy-free allocation. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022013

[13]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[14]

Leandro Arosio, Anna Miriam Benini, John Erik Fornæss, Han Peters. Dynamics of transcendental Hénon maps III: Infinite entropy. Journal of Modern Dynamics, 2021, 17: 465-479. doi: 10.3934/jmd.2021016

[15]

Ankik Kumar Giri. On the uniqueness for coagulation and multiple fragmentation equation. Kinetic and Related Models, 2013, 6 (3) : 589-599. doi: 10.3934/krm.2013.6.589

[16]

Erisa Hasani, Kanishka Perera. On the compactness threshold in the critical Kirchhoff equation. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 1-19. doi: 10.3934/dcds.2021106

[17]

Mengli Hao, Ting Gao, Jinqiao Duan, Wei Xu. Non-Gaussian dynamics of a tumor growth system with immunization. Inverse Problems and Imaging, 2013, 7 (3) : 697-716. doi: 10.3934/ipi.2013.7.697

[18]

Danielle Hilhorst, Masato Iida, Masayasu Mimura, Hirokazu Ninomiya. Relative compactness in $L^p$ of solutions of some 2m components competition-diffusion systems. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 233-244. doi: 10.3934/dcds.2008.21.233

[19]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[20]

Mustapha Mokhtar-Kharroubi, Jacek Banasiak. On spectral gaps of growth-fragmentation semigroups in higher moment spaces. Kinetic and Related Models, 2022, 15 (2) : 147-185. doi: 10.3934/krm.2021050

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (266)
  • HTML views (256)
  • Cited by (0)

Other articles
by authors

[Back to Top]