# American Institute of Mathematical Sciences

November  2020, 25(11): 4165-4188. doi: 10.3934/dcdsb.2020092

## Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model

 1 Lebanese University, Faculty of Science Ⅳ. Laboratory of mathematics-EDST, Hadath, Lebanon 2 College of Engineering and Technology, American University of the Middle East, Kuwait 3 École Centrale de Nantes. UMR 6629 CNRS, laboratoire de mathématiques Jean Leray, F-44321, Nantes, France 4 Lebanese University, Faculty of Science Ⅰ. Laboratory of mathematics-EDST, Hadath, Lebanon

* Corresponding author: Moustafa Ibrahim

Received  June 2019 Revised  November 2019 Published  November 2020 Early access  April 2020

Pattern formation in various biological systems has been attributed to Turing instabilities in systems of reaction-diffusion equations. In this paper, a rigorous mathematical description for the pattern dynamics of aggregating regions of biological individuals possessing the property of chemotaxis is presented. We identify a generalized nonlinear degenerate chemotaxis model where a destabilization mechanism may lead to spatially non homogeneous solutions. Given any general perturbation of the solution nearby an homogenous steady state, we prove that its nonlinear evolution is dominated by the corresponding linear dynamics along the finite number of fastest growing modes. The theoretical results are tested against two different numerical results in two dimensions showing an excellent qualitative agreement.

Citation: Georges Chamoun, Moustafa Ibrahim, Mazen Saad, Raafat Talhouk. Asymptotic behavior of solutions of a nonlinear degenerate chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4165-4188. doi: 10.3934/dcdsb.2020092
##### References:
 [1] B. Andreianov, M. Bendahmane and M. Saad, Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., 235 (2011), 4015-4031.  doi: 10.1016/j.cam.2011.02.023. [2] C. Bardos, Y. Guo and W. Strauss, Stable and unstable ideal plane flows, Chinese Ann. Math. Ser. B, 23 (2002), 149-164.  doi: 10.1142/S0252959902000158. [3] C. Cancès, M. Ibrahim and M. Saad, A Nonlinear CVFE Scheme for an anisotropic degenerate nonlinear Keller-Segel model, European Consortium for Mathematics in Industry, 22 (2014), 1037-1046.  doi: 10.1007/978-3-319-23413-7_145. [4] G. Chamoun, M. Ibrahim, M. Saad and R. Talhouk, Numerical simulation of heterogeneous steady states for a reaction-diffusion degenerate Keller-Segel model, European Consortium for Mathematics in Industry, 30 (2019), 411-417.  doi: 10.1007/978-3-030-27550-1_52. [5] G. Chamoun, M. Saad and R. Talhouk, A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion, Comput. Math. Appl., 68 (2014), 1052-1070.  doi: 10.1016/j.camwa.2014.04.010. [6] G. Chamoun, M. Saad and R. Talhouk, Monotone combined edge finite volume–finite element scheme for anisotropic Keller-Segel model, Numer. Methods Partial Differential Equations, 30 (2014), 1030-1065.  doi: 10.1002/num.21858. [7] M. H. Cohen and A. Robertson, Chemotaxis and the early stages of aggregation in cellular slime molds, Journal of Theoretical Biology, 31 (1971), 119-130.  doi: 10.1016/0022-5193(71)90125-1. [8] P. De Leenheer, J. Gopalakrishnan and E. Zuhr, Instability in a generalized Keller-Segel model, Journal of Biological Dynamics, 6 (2012), 974-991.  doi: 10.1080/17513758.2012.714478. [9] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, 7 (2000), 713-1020. [10] S. Fu and F. Cao, Pattern formation of a Keller-Segel model with the source term $u^p(1-u)$, J. Math., (2013), Art. ID 454513, 11 pp. doi: 10.1155/2013/454513. [11] D. F. Griffiths and D. J. Higham, Numerical Methods For Ordinary Differential Equations. Initial Value Problems, Springer-Verlag London, Ltd., London, 2010. doi: 10.1007/978-0-85729-148-6. [12] Y. Guo, Instability of symmetric vortices with large charge and coupling constant, Comm. Pure Appl. Math., 49 (1996), 1051-1080.  doi: 10.1002/(SICI)1097-0312(199610)49:10<1051::AID-CPA2>3.0.CO;2-D. [13] Y. Guo, C. Hallstrom and D. Spirn, Dynamics near an unstable Kirchhoff ellipse, Comm. Math. Phys., 245 (2004), 297-354.  doi: 10.1007/s00220-003-1017-z. [14] Y. Guo and H. J. Hwang, Pattern formation (Ⅰ): The Keller-Segel model, J. Differential Equations, 249 (2010), 1519-1530.  doi: 10.1016/j.jde.2010.07.025. [15] Y. Guo and H. J. Hwang, Pattern formation. (Ⅱ). The Turing instability, Proc. Amer. Math. Soc., 135 (2007), 2855-2866.  doi: 10.1090/S0002-9939-07-08850-8. [16] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3. [17] T. Hoang and H. J. Hwang, Turing instability in a general system, Nonlinear Anal., 91 (2013), 93-113.  doi: 10.1016/j.na.2013.06.010. [18] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. [19] M. Ibrahim and M. Saad, On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model, Comput. Math. Appl., 68 (2014), 1032-1051.  doi: 10.1016/j.camwa.2014.03.010. [20] H.-Y. Jin and Z.-A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.  doi: 10.1002/mma.3080. [21] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5. [22] K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009. [23] O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. [24] P. Laurençcot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, Nonlinear Elliptic and Parabolic Problems, 64 (2005), 273-290.  doi: 10.1007/3-7643-7385-7_16. [25] R. J. LeVeque, Conservative methods for nonlinear problems, in Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1990,122–135. doi: 10.1007/978-3-0348-5116-9. [26] J. Liu and Z.-A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31-41.  doi: 10.1080/17513758.2011.571722. [27] P. K. Maini, The impact of Turing's work on pattern formation in biology, Mathematics Today, 40 (2004), 140-141. [28] J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, in Interdisciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York, 2003. [29] E. Sander and T. Wanner, Pattern formation in a nonlinear model for animal coats, J. Differential Equations, 191 (2003), 143-174.  doi: 10.1016/S0022-0396(02)00156-0. [30] Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443. [31] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72. [32] X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x. [33] S. Wu, J. Shi and B. Wu, Global existence of solutions to an attraction-repulsion chemotaxis model with growth, Commun. Pure Appl. Anal., 16 (2017), 1037-1058.  doi: 10.3934/cpaa.2017050.

show all references

##### References:
 [1] B. Andreianov, M. Bendahmane and M. Saad, Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., 235 (2011), 4015-4031.  doi: 10.1016/j.cam.2011.02.023. [2] C. Bardos, Y. Guo and W. Strauss, Stable and unstable ideal plane flows, Chinese Ann. Math. Ser. B, 23 (2002), 149-164.  doi: 10.1142/S0252959902000158. [3] C. Cancès, M. Ibrahim and M. Saad, A Nonlinear CVFE Scheme for an anisotropic degenerate nonlinear Keller-Segel model, European Consortium for Mathematics in Industry, 22 (2014), 1037-1046.  doi: 10.1007/978-3-319-23413-7_145. [4] G. Chamoun, M. Ibrahim, M. Saad and R. Talhouk, Numerical simulation of heterogeneous steady states for a reaction-diffusion degenerate Keller-Segel model, European Consortium for Mathematics in Industry, 30 (2019), 411-417.  doi: 10.1007/978-3-030-27550-1_52. [5] G. Chamoun, M. Saad and R. Talhouk, A coupled anisotropic chemotaxis-fluid model: The case of two-sidedly degenerate diffusion, Comput. Math. Appl., 68 (2014), 1052-1070.  doi: 10.1016/j.camwa.2014.04.010. [6] G. Chamoun, M. Saad and R. Talhouk, Monotone combined edge finite volume–finite element scheme for anisotropic Keller-Segel model, Numer. Methods Partial Differential Equations, 30 (2014), 1030-1065.  doi: 10.1002/num.21858. [7] M. H. Cohen and A. Robertson, Chemotaxis and the early stages of aggregation in cellular slime molds, Journal of Theoretical Biology, 31 (1971), 119-130.  doi: 10.1016/0022-5193(71)90125-1. [8] P. De Leenheer, J. Gopalakrishnan and E. Zuhr, Instability in a generalized Keller-Segel model, Journal of Biological Dynamics, 6 (2012), 974-991.  doi: 10.1080/17513758.2012.714478. [9] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of Numerical Analysis, 7 (2000), 713-1020. [10] S. Fu and F. Cao, Pattern formation of a Keller-Segel model with the source term $u^p(1-u)$, J. Math., (2013), Art. ID 454513, 11 pp. doi: 10.1155/2013/454513. [11] D. F. Griffiths and D. J. Higham, Numerical Methods For Ordinary Differential Equations. Initial Value Problems, Springer-Verlag London, Ltd., London, 2010. doi: 10.1007/978-0-85729-148-6. [12] Y. Guo, Instability of symmetric vortices with large charge and coupling constant, Comm. Pure Appl. Math., 49 (1996), 1051-1080.  doi: 10.1002/(SICI)1097-0312(199610)49:10<1051::AID-CPA2>3.0.CO;2-D. [13] Y. Guo, C. Hallstrom and D. Spirn, Dynamics near an unstable Kirchhoff ellipse, Comm. Math. Phys., 245 (2004), 297-354.  doi: 10.1007/s00220-003-1017-z. [14] Y. Guo and H. J. Hwang, Pattern formation (Ⅰ): The Keller-Segel model, J. Differential Equations, 249 (2010), 1519-1530.  doi: 10.1016/j.jde.2010.07.025. [15] Y. Guo and H. J. Hwang, Pattern formation. (Ⅱ). The Turing instability, Proc. Amer. Math. Soc., 135 (2007), 2855-2866.  doi: 10.1090/S0002-9939-07-08850-8. [16] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3. [17] T. Hoang and H. J. Hwang, Turing instability in a general system, Nonlinear Anal., 91 (2013), 93-113.  doi: 10.1016/j.na.2013.06.010. [18] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. Ⅱ, Jahresber. Deutsch. Math.-Verein., 106 (2004), 51-69. [19] M. Ibrahim and M. Saad, On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model, Comput. Math. Appl., 68 (2014), 1032-1051.  doi: 10.1016/j.camwa.2014.03.010. [20] H.-Y. Jin and Z.-A. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457.  doi: 10.1002/mma.3080. [21] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5. [22] K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009. [23] O. A. Ladyžhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968. [24] P. Laurençcot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, Nonlinear Elliptic and Parabolic Problems, 64 (2005), 273-290.  doi: 10.1007/3-7643-7385-7_16. [25] R. J. LeVeque, Conservative methods for nonlinear problems, in Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1990,122–135. doi: 10.1007/978-3-0348-5116-9. [26] J. Liu and Z.-A. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6 (2012), 31-41.  doi: 10.1080/17513758.2011.571722. [27] P. K. Maini, The impact of Turing's work on pattern formation in biology, Mathematics Today, 40 (2004), 140-141. [28] J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, in Interdisciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York, 2003. [29] E. Sander and T. Wanner, Pattern formation in a nonlinear model for animal coats, J. Differential Equations, 191 (2003), 143-174.  doi: 10.1016/S0022-0396(02)00156-0. [30] Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443. [31] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 237 (1952), 37-72. [32] X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly's compactness theorem, J. Math. Biol., 66 (2013), 1241-1266.  doi: 10.1007/s00285-012-0533-x. [33] S. Wu, J. Shi and B. Wu, Global existence of solutions to an attraction-repulsion chemotaxis model with growth, Commun. Pure Appl. Anal., 16 (2017), 1037-1058.  doi: 10.3934/cpaa.2017050.
Unstructured triangular mesh for the space domain ${\Omega} = {\left({0,1}\right)}\times{\left({0,1}\right)}$ with 14336 acute angle triangles
Plot of $h({\left\|{q}\right\|}^{2})$ as a function of ${\left\|{q}\right\|}^{2}$defined by equation (13). When the chemosensitivity strength $\zeta$ increases beyond the critical value $\zeta_{c}$, $h({\left\|{q}\right\|}^{2})$ becomes negative for a finite range of unstable wave numbers ${\left\|{q}\right\|}^{2}$ marked with rhombi
To the top: Distribution of positive eigenvalues $\lambda_{q}^{+}$ with respect to the range of unstable wave numbers ${\left\|{q}\right\|}^{2}$. To the bottom: Distribution of negative eigenvalues $\lambda_{q}^{-}$ with respect to the range of unstable wave numbers ${\left\|{q}\right\|}^{2}$
Initial condition of the function $u{\left({ {\mathbf{x}},t}\right)}$ given by equation (25) with a small perturbation around zero. 2D view of the function $u{\left({ {\mathbf{x}},t}\right)}$ (to the left) and a 3D view of its magnitude (to the right)
First row from left to right: Nonlinear evolution of the function $u{\left({ {\mathbf{x}},t}\right)}$ at $t = 2.5$, $t = 325$, and $t = 997.5$. Second row from left to right: Evolution of the heterogeneous stationary solutions at the same moments as for the evolution of $u{\left({ {\mathbf{x}},t}\right)}$
Similarities of patterns between the nonlinear evolution $u{\left({ {\mathbf{x}},t}\right)}$ (to the left) and the heterogeneous state (to the right)
Time evolution of the difference in ${L^{2}}$ between $u{\left({ {\mathbf{x}},t}\right)}$ and the heterogeneous solution
Plot of $h({\left\|{q}\right\|}^{2})$ as a function of ${\left\|{q}\right\|}^{2}$defined by equation (13). When the death rate $\beta$ decreases below the critical value $\beta_{c}$, $h({\left\|{q}\right\|}^{2})$ becomes negative for a finite range of unstable wave numbers ${\left\|{q}\right\|}^{2}$ marked with rhombi, and pattern formation can be expected
To the top: Distribution of positive eigenvalues $\lambda_{q}^{+}$ with respect to the range of unstable wave numbers ${\left\|{q}\right\|}^{2}$. To the bottom: Distribution of negative eigenvalues $\lambda_{q}^{-}$ with respect to the range of unstable wave numbers ${\left\|{q}\right\|}^{2}$
Initial condition of the function $u{\left({ {\mathbf{x}},t}\right)}$ given by equation (25) with a small perturbation around zero.2D view of the function $u{\left({ {\mathbf{x}},t}\right)}$ (to the left) and a 3D view of its magnitude (to the right)
First row from left to right. Nonlinear evolution of the function $u{\left({ {\mathbf{x}},t}\right)}$ at $t = 10$, $t = 70$, and $t = 750$. Second row from left to right. Evolution of the heterogeneous stationary solutions at the same moments as for $u{\left({ {\mathbf{x}},t}\right)}$
Similarities of patterns between the nonlinear evolution $u({\left({ {\mathbf{x}},t}\right)}$ (to the left) and the heterogeneous state (to the right)
 [1] R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339 [2] Yong-Fu Yang. Mechanism of the formation of singularities for diagonal systems with linearly degenerate characteristic fields. Communications on Pure and Applied Analysis, 2009, 8 (2) : 757-768. doi: 10.3934/cpaa.2009.8.757 [3] Deborah Lacitignola, Massimo Frittelli, Valerio Cusimano, Andrea De Gaetano. Pattern formation on a growing oblate spheroid. an application to adult sea urchin development. Journal of Computational Dynamics, 2022, 9 (2) : 185-206. doi: 10.3934/jcd.2021027 [4] Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060 [5] Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617 [6] Jian-Jun Xu, Junichiro Shimizu. Asymptotic theory for disc-like crystal growth (II): interfacial instability and pattern formation at early stage of growth. Communications on Pure and Applied Analysis, 2004, 3 (3) : 527-543. doi: 10.3934/cpaa.2004.3.527 [7] Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231 [8] Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087 [9] Stephen Pankavich, Petronela Radu. Nonlinear instability of solutions in parabolic and hyperbolic diffusion. Evolution Equations and Control Theory, 2013, 2 (2) : 403-422. doi: 10.3934/eect.2013.2.403 [10] Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 [11] Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 [12] Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399 [13] Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks and Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021 [14] Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 [15] Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 [16] Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555 [17] Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 [18] Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609 [19] Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217 [20] Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010

2020 Impact Factor: 1.327