November  2020, 25(11): 4211-4220. doi: 10.3934/dcdsb.2020094

A note on global stability in the periodic logistic map

1. 

Center for Mathematical Analysis, Geometry and Dynamical Systems, University of Lisbon, Portugal, University of Madeira, Funchal, Portugal

2. 

University of Madeira, Funchal, Portugal, Center of Statistics and Applications, University of Lisbon, Portugal

* Corresponding author: Rafael Luís

Received  July 2019 Revised  October 2019 Published  April 2020

Fund Project: The first and second authors are partially supported by FCT/Portugal through the projects UID/MAT/04459/2019 and UID/MAT/00006/2019, respectively

In this paper, the dynamics of the celebrated $ p- $periodic one-dimensional logistic map is explored. A result on the global stability of the origin is provided and, under certain conditions on the parameters, the local stability condition of the $ p- $periodic orbit is shown to imply its global stability.

Citation: Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094
References:
[1]

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997. doi: 10.1007/978-3-642-59281-2.  Google Scholar

[2]

Z. AlSharawi and J. Angelos, On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.  doi: 10.1016/j.amc.2005.12.016.  Google Scholar

[3]

W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.  doi: 10.1017/S030500410002990X.  Google Scholar

[4]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity, second edition, Westview Press, Boulder, CO, 2003.  Google Scholar

[5]

H. A. El-Morshedy and V. J. López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.  Google Scholar

[6]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005.  Google Scholar

[7]

S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008.  Google Scholar

[8]

M. GrinfeldP. A. Knight and H. Lamba, On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.  doi: 10.1088/0305-4470/29/24/026.  Google Scholar

[9]

R. B. KelloggT. Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.  doi: 10.1137/0713041.  Google Scholar

[10]

M. Kot and W. M. Schaffer, The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.  doi: 10.1016/0040-5809(84)90038-8.  Google Scholar

[11]

C. P. Li and M. Zhao, On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.  doi: 10.1007/s10114-017-6011-z.  Google Scholar

[12]

J. Li, Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.  doi: 10.1016/0025-5564(92)90012-L.  Google Scholar

[13]

E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp. doi: 10.14232/ejqtde.2016.1.76.  Google Scholar

[14]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.   Google Scholar

[15]

J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975.  Google Scholar

[16]

R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977). doi: 10.1090/memo/0190.  Google Scholar

[17]

H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar

[18]

D. Singer, Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.  Google Scholar

[19]

P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121.   Google Scholar

show all references

References:
[1]

K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997. doi: 10.1007/978-3-642-59281-2.  Google Scholar

[2]

Z. AlSharawi and J. Angelos, On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.  doi: 10.1016/j.amc.2005.12.016.  Google Scholar

[3]

W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.  doi: 10.1017/S030500410002990X.  Google Scholar

[4]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity, second edition, Westview Press, Boulder, CO, 2003.  Google Scholar

[5]

H. A. El-Morshedy and V. J. López, Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.  doi: 10.1080/10236190701671632.  Google Scholar

[6]

S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005.  Google Scholar

[7]

S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008.  Google Scholar

[8]

M. GrinfeldP. A. Knight and H. Lamba, On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.  doi: 10.1088/0305-4470/29/24/026.  Google Scholar

[9]

R. B. KelloggT. Y. Li and J. Yorke, A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.  doi: 10.1137/0713041.  Google Scholar

[10]

M. Kot and W. M. Schaffer, The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.  doi: 10.1016/0040-5809(84)90038-8.  Google Scholar

[11]

C. P. Li and M. Zhao, On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.  doi: 10.1007/s10114-017-6011-z.  Google Scholar

[12]

J. Li, Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.  doi: 10.1016/0025-5564(92)90012-L.  Google Scholar

[13]

E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp. doi: 10.14232/ejqtde.2016.1.76.  Google Scholar

[14]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.   Google Scholar

[15]

J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975.  Google Scholar

[16]

R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977). doi: 10.1090/memo/0190.  Google Scholar

[17]

H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar

[18]

D. Singer, Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.  Google Scholar

[19]

P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121.   Google Scholar

Figure 1.  Regions of stability, in the parameter space $ r_{0}O r_1 $, of the fixed points of $ f_1\circ f_0 $, with $ f_i(x) = r_i x(1-x) $, $ i = 0, 1 $
[1]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[2]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[3]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[4]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[5]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[6]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[7]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[8]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[11]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[12]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[13]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[14]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[15]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[16]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[17]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[18]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[19]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[20]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (249)
  • HTML views (289)
  • Cited by (0)

Other articles
by authors

[Back to Top]