
-
Previous Article
Fractional approximations of abstract semilinear parabolic problems
- DCDS-B Home
- This Issue
-
Next Article
Dynamics of a diffusive Leslie-Gower predator-prey model in spatially heterogeneous environment
A note on global stability in the periodic logistic map
1. | Center for Mathematical Analysis, Geometry and Dynamical Systems, University of Lisbon, Portugal, University of Madeira, Funchal, Portugal |
2. | University of Madeira, Funchal, Portugal, Center of Statistics and Applications, University of Lisbon, Portugal |
In this paper, the dynamics of the celebrated $ p- $periodic one-dimensional logistic map is explored. A result on the global stability of the origin is provided and, under certain conditions on the parameters, the local stability condition of the $ p- $periodic orbit is shown to imply its global stability.
References:
[1] |
K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997.
doi: 10.1007/978-3-642-59281-2. |
[2] |
Z. AlSharawi and J. Angelos,
On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.
doi: 10.1016/j.amc.2005.12.016. |
[3] |
W. A. Coppel,
The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.
doi: 10.1017/S030500410002990X. |
[4] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity,
second edition, Westview Press, Boulder, CO, 2003. |
[5] |
H. A. El-Morshedy and V. J. López,
Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.
doi: 10.1080/10236190701671632. |
[6] |
S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005. |
[7] |
S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[8] |
M. Grinfeld, P. A. Knight and H. Lamba,
On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.
doi: 10.1088/0305-4470/29/24/026. |
[9] |
R. B. Kellogg, T. Y. Li and J. Yorke,
A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.
doi: 10.1137/0713041. |
[10] |
M. Kot and W. M. Schaffer,
The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.
doi: 10.1016/0040-5809(84)90038-8. |
[11] |
C. P. Li and M. Zhao,
On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.
doi: 10.1007/s10114-017-6011-z. |
[12] |
J. Li,
Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.
doi: 10.1016/0025-5564(92)90012-L. |
[13] |
E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp.
doi: 10.14232/ejqtde.2016.1.76. |
[14] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. Google Scholar |
[15] |
J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975. |
[16] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977).
doi: 10.1090/memo/0190. |
[17] |
H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003.
doi: 10.1007/978-94-017-0417-5. |
[18] |
D. Singer,
Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[19] |
P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121. Google Scholar |
show all references
References:
[1] |
K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. An Introduction to Dynamical Systems, Textbooks in Mathematical Sciences, Springer-Verlag, New York, 1997.
doi: 10.1007/978-3-642-59281-2. |
[2] |
Z. AlSharawi and J. Angelos,
On the periodic logistic equation, Appl. Math. Comput., 180 (2006), 342-352.
doi: 10.1016/j.amc.2005.12.016. |
[3] |
W. A. Coppel,
The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.
doi: 10.1017/S030500410002990X. |
[4] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity,
second edition, Westview Press, Boulder, CO, 2003. |
[5] |
H. A. El-Morshedy and V. J. López,
Global attractors for difference equations dominated by one-dimensional maps, J. Difference Equ. Appl., 14 (2008), 391-410.
doi: 10.1080/10236190701671632. |
[6] |
S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, third edition, Springer, New York, 2005. |
[7] |
S. N. Elaydi, Discrete Chaos. With Applications in Science and Engineering, Second edition, Chapman & Hall/CRC, Boca Raton, FL, 2008. |
[8] |
M. Grinfeld, P. A. Knight and H. Lamba,
On the periodically perturbed logistic equation, J. Phys. A, 29 (1996), 8035-8040.
doi: 10.1088/0305-4470/29/24/026. |
[9] |
R. B. Kellogg, T. Y. Li and J. Yorke,
A constructive proof of the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., 13 (1976), 473-483.
doi: 10.1137/0713041. |
[10] |
M. Kot and W. M. Schaffer,
The effects of seasonality on discrete models of population growth, Theoret. Population Biol., 26 (1984), 340-360.
doi: 10.1016/0040-5809(84)90038-8. |
[11] |
C. P. Li and M. Zhao,
On the periodic logistic map, Acta Math. Sin. (Engl. Ser.), 34 (2018), 891-900.
doi: 10.1007/s10114-017-6011-z. |
[12] |
J. Li,
Periodic solutions of population models in a periodically fluctuating environment, Math. Biosci., 110 (1992), 17-25.
doi: 10.1016/0025-5564(92)90012-L. |
[13] |
E. Liz, On the global stability of periodic Ricker maps, Electron. J. Qual. Theory Differ. Equ., 76 (2016), 8 pp.
doi: 10.14232/ejqtde.2016.1.76. |
[14] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. Google Scholar |
[15] |
J. R. Munkres, Topology: A First Course, Prentice Hall, Inc., Englewood Cliffs, NJ, 1975. |
[16] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977).
doi: 10.1090/memo/0190. |
[17] |
H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Models, Mathematical Modelling: Theory and applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003.
doi: 10.1007/978-94-017-0417-5. |
[18] |
D. Singer,
Stable orbits and bifurcation maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[19] |
P. F. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Math. Phys., 10 (1838), 113-121. Google Scholar |

[1] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[2] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[3] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[4] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[5] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[6] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[7] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[8] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[9] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[10] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[11] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[12] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[13] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[14] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[15] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[16] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[17] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[18] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[19] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[20] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]