November  2020, 25(11): 4257-4276. doi: 10.3934/dcdsb.2020096

Extension, embedding and global stability in two dimensional monotone maps

1. 

Department of Mathematics, Sultan Qaboos University, P. O. Box 36, PC 123, Al-Khod, Sultanate of Oman

2. 

Department of Mathematics and Statistics, American University of Sharjah, P. O. Box 26666, University City, Sharjah, UAE

* Corresponding author: Ziyad AlSharawi

Received  July 2019 Revised  November 2019 Published  April 2020

We consider the general second order difference equation $ x_{n+1} = F(x_n, x_{n-1}) $ in which $ F $ is continuous and of mixed monotonicity in its arguments. In equations with negative terms, a persistent set can be a proper subset of the positive orthant, which motivates studying global stability with respect to compact invariant domains. In this paper, we assume that $ F $ has a semi-convex compact invariant domain, then make an extension of $ F $ on a rectangular domain that contains the invariant domain. The extension preserves the continuity and monotonicity of $ F. $ Then we use the embedding technique to embed the dynamical system generated by the extended map into a higher dimensional dynamical system, which we use to characterize the asymptotic dynamics of the original system. Some illustrative examples are given at the end.

Citation: Ahmad Al-Salman, Ziyad AlSharawi, Sadok Kallel. Extension, embedding and global stability in two dimensional monotone maps. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4257-4276. doi: 10.3934/dcdsb.2020096
References:
[1]

R. Abu-SarisZ. AlSharawi and M. B. H. Rhouma, The dynamics of some discrete models with delay under the effect of constant yield harvesting, Chaos Solitons Fractals, 54 (2013), 26-38.  doi: 10.1016/j.chaos.2013.05.008.  Google Scholar

[2]

Z. AlSharawi, A global attractor in some discrete contest competition models with delay under the effect of periodic stocking, Abstr. Appl. Anal., (2013), Art. ID 101649, 7 pp. doi: 10.1155/2013/101649.  Google Scholar

[3]

A. M. AmlehE. Camouzis and G. Ladas, On second-order rational difference equation. Ⅰ, J. Difference Equ. Appl., 13 (2007), 969-1004.  doi: 10.1080/10236190701388492.  Google Scholar

[4]

A. M. AmlehE. Camouzis and G. Ladas, On the dynamics of a rational difference equation. Ⅱ, Int. J. Difference Equ., 3 (2008), 195-225.   Google Scholar

[5]

E. Camouzis and G. Ladas, Dynamics of Third-order Rational Difference Equations with Open Problems and Conjectures, Advances in Discrete Mathematics and Applications, vol. 5, Chapman & Hall/CRC, Boca Raton, FL, 2008.  Google Scholar

[6]

E. Camouzis and G. Ladas, When does local asymptotic stability imply global attractivity in rational equations?, J. Difference Equ. Appl., 12 (2006), 863-885.  doi: 10.1080/10236190600772663.  Google Scholar

[7]

W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.  doi: 10.1017/S030500410002990X.  Google Scholar

[8]

J.-L. Gouzé and K. P. Hadeler, Monotone flows and order intervals, Nonlinear World, 1 (1994), 23-34.   Google Scholar

[9]

E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications, vol. 4, Chapman & Hall/CRC, Boca Raton, FL, 2005.  Google Scholar

[10]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1703-8.  Google Scholar

[11]

M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[12]

M. R. S. Kulenović, G. Ladas, L. F. Martins and I. W. Rodrigues, The dynamics of $x_{n+1} = \frac{\alpha+\beta x_n}{A+Bx_n+Cx_{n-1}}$: Facts and conjectures, Comput. Math. Appl., 45 (2003), 1087–1099, 2003. doi: 10.1016/S0898-1221(03)00090-7.  Google Scholar

[13]

M. R. S. KulenovićG. Ladas and W. S. Sizer, On the recursive sequence $x_{n+1} = (\alpha x_n+\beta x_{n-1})/(\gamma x_n+\delta x_{n-1})$, Math. Sci. Res. Hot-Line, 2 (1998), 1-16.   Google Scholar

[14]

M. R. S. Kulenović and O. Merino, A note on unbounded solutions of a class of second order rational difference equations, J. Difference Equ. Appl., 12 (2006), 777-781.  doi: 10.1080/10236190600734184.  Google Scholar

[15]

M. R. S. Kulenović and O. Merino, Global bifurcation for discrete competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149.  doi: 10.3934/dcdsb.2009.12.133.  Google Scholar

[16]

M. R. S. Kulenović and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2471-2486.  doi: 10.1142/S0218127410027118.  Google Scholar

[17]

W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971.  Google Scholar

[18]

G. Nyerges, A note on a generalization of Pielou's equation, J. Difference Equ. Appl., 14 (2008), 563-565.  doi: 10.1080/10236190801912316.  Google Scholar

[19]

H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Science Models, Mathematical Modelling: Theory and Applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar

[20]

H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biol., 53 (2006), 747-758.  doi: 10.1007/s00285-006-0004-3.  Google Scholar

[21]

H. L. Smith, Global stability for mixed monotone systems, J. Difference Equ. Appl., 14 (2008), 1159-1164.  doi: 10.1080/10236190802332126.  Google Scholar

show all references

References:
[1]

R. Abu-SarisZ. AlSharawi and M. B. H. Rhouma, The dynamics of some discrete models with delay under the effect of constant yield harvesting, Chaos Solitons Fractals, 54 (2013), 26-38.  doi: 10.1016/j.chaos.2013.05.008.  Google Scholar

[2]

Z. AlSharawi, A global attractor in some discrete contest competition models with delay under the effect of periodic stocking, Abstr. Appl. Anal., (2013), Art. ID 101649, 7 pp. doi: 10.1155/2013/101649.  Google Scholar

[3]

A. M. AmlehE. Camouzis and G. Ladas, On second-order rational difference equation. Ⅰ, J. Difference Equ. Appl., 13 (2007), 969-1004.  doi: 10.1080/10236190701388492.  Google Scholar

[4]

A. M. AmlehE. Camouzis and G. Ladas, On the dynamics of a rational difference equation. Ⅱ, Int. J. Difference Equ., 3 (2008), 195-225.   Google Scholar

[5]

E. Camouzis and G. Ladas, Dynamics of Third-order Rational Difference Equations with Open Problems and Conjectures, Advances in Discrete Mathematics and Applications, vol. 5, Chapman & Hall/CRC, Boca Raton, FL, 2008.  Google Scholar

[6]

E. Camouzis and G. Ladas, When does local asymptotic stability imply global attractivity in rational equations?, J. Difference Equ. Appl., 12 (2006), 863-885.  doi: 10.1080/10236190600772663.  Google Scholar

[7]

W. A. Coppel, The solution of equations by iteration, Proc. Cambridge Philos. Soc., 51 (1955), 41-43.  doi: 10.1017/S030500410002990X.  Google Scholar

[8]

J.-L. Gouzé and K. P. Hadeler, Monotone flows and order intervals, Nonlinear World, 1 (1994), 23-34.   Google Scholar

[9]

E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Advances in Discrete Mathematics and Applications, vol. 4, Chapman & Hall/CRC, Boca Raton, FL, 2005.  Google Scholar

[10]

V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Mathematics and its Applications, vol. 256, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-017-1703-8.  Google Scholar

[11]

M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, With Open Problems and Conjectures, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[12]

M. R. S. Kulenović, G. Ladas, L. F. Martins and I. W. Rodrigues, The dynamics of $x_{n+1} = \frac{\alpha+\beta x_n}{A+Bx_n+Cx_{n-1}}$: Facts and conjectures, Comput. Math. Appl., 45 (2003), 1087–1099, 2003. doi: 10.1016/S0898-1221(03)00090-7.  Google Scholar

[13]

M. R. S. KulenovićG. Ladas and W. S. Sizer, On the recursive sequence $x_{n+1} = (\alpha x_n+\beta x_{n-1})/(\gamma x_n+\delta x_{n-1})$, Math. Sci. Res. Hot-Line, 2 (1998), 1-16.   Google Scholar

[14]

M. R. S. Kulenović and O. Merino, A note on unbounded solutions of a class of second order rational difference equations, J. Difference Equ. Appl., 12 (2006), 777-781.  doi: 10.1080/10236190600734184.  Google Scholar

[15]

M. R. S. Kulenović and O. Merino, Global bifurcation for discrete competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 133-149.  doi: 10.3934/dcdsb.2009.12.133.  Google Scholar

[16]

M. R. S. Kulenović and O. Merino, Invariant manifolds for competitive discrete systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2471-2486.  doi: 10.1142/S0218127410027118.  Google Scholar

[17]

W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971.  Google Scholar

[18]

G. Nyerges, A note on a generalization of Pielou's equation, J. Difference Equ. Appl., 14 (2008), 563-565.  doi: 10.1080/10236190801912316.  Google Scholar

[19]

H. Sedaghat, Nonlinear Difference Equations. Theory with Applications to Social Science Models, Mathematical Modelling: Theory and Applications, vol. 15, Kluwer Academic Publishers, Dordrecht, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar

[20]

H. L. Smith, The discrete dynamics of monotonically decomposable maps, J. Math. Biol., 53 (2006), 747-758.  doi: 10.1007/s00285-006-0004-3.  Google Scholar

[21]

H. L. Smith, Global stability for mixed monotone systems, J. Difference Equ. Appl., 14 (2008), 1159-1164.  doi: 10.1080/10236190802332126.  Google Scholar

Figure 2.1.  In part (a) of this figure, we illustrate our notation of projecting a point $(x, y)$ to the boundary $\partial \Omega.$ In part (b), we illustrate the notion of putting the invariant domain $\Omega$ inside an Origami domain
Figure 2.2.  This figure shows the possible options for the boundary of a convex $\Omega$ and a possible ray extension. Part (a) is based on the assumption that $f$ is non-decreasing and Part (b) is based on the assumption that $f$ is non-increasing. Note that the missing quarter in Part (a) is due to the fact that we cannot have $f(\uparrow)$ and $F(\downarrow, \uparrow)$ at the same time. Similarly for the missing quarter of Part (b)
Figure 2.3.  Grafting $\gamma_1$ along $\gamma_2$
Figure 2.4.  The various cases for the boundary pieces of an origami domain
Figure 2.5.  A semi-convex domain is shown in Part (a). Next is shown a piece $ C_1\cup C_2 $ of the boundary of $ \Omega $ oriented positively, with $ f(t) = F(r(t)) $ changing monotonicity from $ C_1 $ to $ C_2 $. Parts (b) and (c) show two different ray extensions, while (d) shows the adjustment to make to these extensions, before filling the sector. As explained in the text, (b) is not a valid extension if monotonicity is to be preserved in the extension
Figure 2.6.  Extending from semi-convex domain to the origami domain reduces to extending over sectors, with cases labeled (a) through (d)
Figure 2.7.  Filling a rectangle where $ F $ is known on three sides. Extending partially by $ \widetilde{F}_1 $ as shown in (b) then extending over the resulting sector
Figure 4.1.  Part (a) of this figure shows the invariant region $\Omega, $ while part (b) shows $T(\Omega)$ together with the extension through horizontal projections. The scale is missing to indicate the general form of the region when $0 < h < \min\{p, \frac{1}{2}\}.$
[1]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[7]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020409

[8]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[9]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[10]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[11]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[12]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[13]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[14]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[15]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[16]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[18]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[19]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[20]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (89)
  • HTML views (228)
  • Cited by (0)

Other articles
by authors

[Back to Top]