November  2020, 25(11): 4317-4333. doi: 10.3934/dcdsb.2020099

Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China

Received  August 2011 Published  April 2020

Fund Project: The author is partially supported by NSFC grant 11801460

In this paper, we prove the unique global strong solution for the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows when the initial density can contain vacuum states, as long as the initial data satisfies some compatibility condition. Furthermore, our main result improves all the previous results where the initial density is strictly positive. The main ingredient of the proof is to use some critical Sobolev inequality of logarithmic type, which were originally due to Brezis-Gallouet in [3] and Brezis-Wainger in [4], some regularity properties of Stokes system and some delicate energy estimates for nonhomogeneous incompressible heat conducting flows.

Citation: Yongfu Wang. Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4317-4333. doi: 10.3934/dcdsb.2020099
References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar

[2]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.  doi: 10.4134/JKMS.2008.45.3.645.  Google Scholar

[6]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[7]

L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp. doi: 10.1063/1.4928869.  Google Scholar

[8]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[9]

D. FangR. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994.  Google Scholar

[11]

C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.  doi: 10.1007/s00220-013-1791-1.  Google Scholar

[14]

X. HuangJ. Li and Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[15]

X. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[16]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[17]

X. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[18]

X. Huang and Z. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.  doi: 10.3934/dcds.2016.36.4477.  Google Scholar

[19]

S. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[20]

A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[21]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[22]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.  doi: 10.1007/s002090100332.  Google Scholar

[23]

H.-L. LiX. Xu and J. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[24] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[25]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[26]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[27] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.   Google Scholar
[28]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[29]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[30]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[31]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[32]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[34]

J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

show all references

References:
[1]

S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar

[2]

S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[3]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[4]

H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.  doi: 10.1080/03605308008820154.  Google Scholar

[5]

Y. Cho and H. Kim, Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.  doi: 10.4134/JKMS.2008.45.3.645.  Google Scholar

[6]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.  doi: 10.1081/PDE-120021191.  Google Scholar

[7]

L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp. doi: 10.1063/1.4928869.  Google Scholar

[8]

J. FanS. Jiang and Y. Ou, A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.  doi: 10.1016/j.anihpc.2009.09.012.  Google Scholar

[9]

D. FangR. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.  doi: 10.1016/j.na.2011.12.011.  Google Scholar

[10]

G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994.  Google Scholar

[11]

C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar

[12]

X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.  doi: 10.1007/s00205-010-0295-9.  Google Scholar

[13]

X. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.  doi: 10.1007/s00220-013-1791-1.  Google Scholar

[14]

X. HuangJ. Li and Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.  doi: 10.1007/s00205-012-0577-5.  Google Scholar

[15]

X. Huang and Y. Wang, Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.  doi: 10.1016/j.jde.2015.03.008.  Google Scholar

[16]

X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.  doi: 10.1016/j.jde.2012.08.029.  Google Scholar

[17]

X. Huang and Y. Wang, Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.  doi: 10.1137/120894865.  Google Scholar

[18]

X. Huang and Z. Xin, On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.  doi: 10.3934/dcds.2016.36.4477.  Google Scholar

[19]

S. Jiang and Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.  doi: 10.1016/S0252-9602(10)60178-6.  Google Scholar

[20]

A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010.   Google Scholar

[21]

H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.  doi: 10.1137/S0036141004442197.  Google Scholar

[22]

H. KozonoT. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.  doi: 10.1007/s002090100332.  Google Scholar

[23]

H.-L. LiX. Xu and J. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.  doi: 10.1137/120893355.  Google Scholar

[24] P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.   Google Scholar
[25]

B. LüZ. Xu and X. Zhong, Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.  doi: 10.1016/j.matpur.2016.10.009.  Google Scholar

[26]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.  doi: 10.1007/978-3-642-10926-3_1.  Google Scholar

[27] A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.   Google Scholar
[28]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[29]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.  doi: 10.1137/0521061.  Google Scholar

[30]

Y. SunC. Wang and Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.  doi: 10.1007/s00205-011-0407-1.  Google Scholar

[31]

Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.  doi: 10.1016/j.nonrwa.2013.09.020.  Google Scholar

[32]

Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.  Google Scholar

[33]

Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.  doi: 10.1007/s00220-012-1610-0.  Google Scholar

[34]

J. Zhang, Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.  doi: 10.1016/j.jde.2015.03.011.  Google Scholar

[1]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[2]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[3]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[4]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[5]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[6]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[8]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[9]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[10]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[13]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[14]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[15]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[16]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[17]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[18]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[19]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[20]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (117)
  • HTML views (240)
  • Cited by (0)

Other articles
by authors

[Back to Top]