-
Previous Article
Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations
- DCDS-B Home
- This Issue
-
Next Article
On the approaching time towards the attractor of differential equations perturbed by small noise
Global strong solution to the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows with vacuum
School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China |
In this paper, we prove the unique global strong solution for the two dimensional nonhomogeneous incompressible heat conducting Navier-Stokes flows when the initial density can contain vacuum states, as long as the initial data satisfies some compatibility condition. Furthermore, our main result improves all the previous results where the initial density is strictly positive. The main ingredient of the proof is to use some critical Sobolev inequality of logarithmic type, which were originally due to Brezis-Gallouet in [
References:
[1] |
S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar |
[2] |
S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
H. Brézis and T. Gallouet,
Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.
doi: 10.1016/0362-546X(80)90068-1. |
[4] |
H. Brézis and S. Wainger,
A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[5] |
Y. Cho and H. Kim,
Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.
doi: 10.4134/JKMS.2008.45.3.645. |
[6] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[7] |
L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp.
doi: 10.1063/1.4928869. |
[8] |
J. Fan, S. Jiang and Y. Ou,
A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.
doi: 10.1016/j.anihpc.2009.09.012. |
[9] |
D. Fang, R. Zi and T. Zhang,
A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.
doi: 10.1016/j.na.2011.12.011. |
[10] |
G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994. |
[11] |
C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar |
[12] |
X. Hu and D. Wang,
Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.
doi: 10.1007/s00205-010-0295-9. |
[13] |
X. Huang and J. Li,
Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.
doi: 10.1007/s00220-013-1791-1. |
[14] |
X. Huang, J. Li and Y. Wang,
Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.
doi: 10.1007/s00205-012-0577-5. |
[15] |
X. Huang and Y. Wang,
Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.
doi: 10.1016/j.jde.2015.03.008. |
[16] |
X. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[17] |
X. Huang and Y. Wang,
Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.
doi: 10.1137/120894865. |
[18] |
X. Huang and Z. Xin,
On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.
doi: 10.3934/dcds.2016.36.4477. |
[19] |
S. Jiang and Y. Ou,
A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.
doi: 10.1016/S0252-9602(10)60178-6. |
[20] |
A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. Google Scholar |
[21] |
H. Kim,
A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[22] |
H. Kozono, T. Ogawa and Y. Taniuchi,
The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.
doi: 10.1007/s002090100332. |
[23] |
H.-L. Li, X. Xu and J. Zhang,
Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.
doi: 10.1137/120893355. |
[24] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.
![]() |
[25] |
B. Lü, Z. Xu and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.
doi: 10.1016/j.matpur.2016.10.009. |
[26] |
L. Nirenberg,
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.
doi: 10.1007/978-3-642-10926-3_1. |
[27] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.
![]() |
[28] |
T. Ozawa,
On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.
doi: 10.1006/jfan.1995.1012. |
[29] |
J. Simon,
Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[30] |
Y. Sun, C. Wang and Z. Zhang,
A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.
doi: 10.1007/s00205-011-0407-1. |
[31] |
Y. Wang,
One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.
doi: 10.1016/j.nonrwa.2013.09.020. |
[32] |
Z. Xin,
Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[33] |
Z. Xin and W. Yan,
On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.
doi: 10.1007/s00220-012-1610-0. |
[34] |
J. Zhang,
Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.
doi: 10.1016/j.jde.2015.03.011. |
show all references
References:
[1] |
S. A. Antontesv and A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Lecture Notes, Novosibirsk State University, Novosibirsk, U.S.S.R., 1973. Google Scholar |
[2] |
S. A. Antontesv, A. V. Kazhikov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids., North-Holland Publishing Co., Amsterdam, 1990. |
[3] |
H. Brézis and T. Gallouet,
Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.
doi: 10.1016/0362-546X(80)90068-1. |
[4] |
H. Brézis and S. Wainger,
A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
doi: 10.1080/03605308008820154. |
[5] |
Y. Cho and H. Kim,
Existence result for heat-conducting viscous incompressible fluid with vacuum, J. Korean Math. Soc., 45 (2008), 645-681.
doi: 10.4134/JKMS.2008.45.3.645. |
[6] |
H. J. Choe and H. Kim,
Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids, Comm. Partial Differential Equations, 28 (2003), 1183-1201.
doi: 10.1081/PDE-120021191. |
[7] |
L. Du and Y. Wang, A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows, J. Math. Phys., 56 (2015), 091503, 20 pp.
doi: 10.1063/1.4928869. |
[8] |
J. Fan, S. Jiang and Y. Ou,
A blow-up criterion for compressible viscous heatconductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337-350.
doi: 10.1016/j.anihpc.2009.09.012. |
[9] |
D. Fang, R. Zi and T. Zhang,
A blow-up criterion for two dimensional compressible viscous heat-conductive flows, Nonlinear Anal., 75 (2012), 3130-3141.
doi: 10.1016/j.na.2011.12.011. |
[10] |
G. P. Galdi, An Introduction to the Mathematical Theory of Navier-Stokes Equations: Linearized Steady Problems, Vol. 1, Springer-Verlag, New York, 1994. |
[11] |
C. He, J. Li and B. Lü, On the cauchy problem of 3D nonhomogeneous Navier-Stokes equations with density-dependent viscosity and vacuum, preprint, arXiv: 1709.05608, (2017). Google Scholar |
[12] |
X. Hu and D. Wang,
Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203-238.
doi: 10.1007/s00205-010-0295-9. |
[13] |
X. Huang and J. Li,
Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and Magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.
doi: 10.1007/s00220-013-1791-1. |
[14] |
X. Huang, J. Li and Y. Wang,
Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Rational Mech. Anal, 207 (2013), 303-316.
doi: 10.1007/s00205-012-0577-5. |
[15] |
X. Huang and Y. Wang,
Global strong solution of 3D inhomogeneous Navier-Stokes equations with density-dependent viscosity, J. Differential Equations, 259 (2015), 1606-1627.
doi: 10.1016/j.jde.2015.03.008. |
[16] |
X. Huang and Y. Wang,
Global strong solution to the 2D nonhomogeneous incompressible MHD system, J. Differential Equations, 254 (2013), 511-527.
doi: 10.1016/j.jde.2012.08.029. |
[17] |
X. Huang and Y. Wang,
Global strong solution with vacuum to the two-dimensional density-dependent Navier-Stokes system, SIAM J. Math. Anal., 46 (2014), 1771-1788.
doi: 10.1137/120894865. |
[18] |
X. Huang and Z. Xin,
On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity, Discrete Contin. Dyn. Syst., 36 (2016), 4477-4493.
doi: 10.3934/dcds.2016.36.4477. |
[19] |
S. Jiang and Y. Ou,
A blow-up criterion for compressible viscous heat-conductive flows, Acta Math. Sci. Ser. B (Engl. Ed.), 30 (2010), 1851-1864.
doi: 10.1016/S0252-9602(10)60178-6. |
[20] |
A. V. Kajikov, Resolution of boundary value problems for nonhomogeneous viscous fluids, Dokl. Akad. Nauk., 216 (1974), 1008-1010. Google Scholar |
[21] |
H. Kim,
A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations, SIAM J. Math. Anal., 37 (2006), 1417-1434.
doi: 10.1137/S0036141004442197. |
[22] |
H. Kozono, T. Ogawa and Y. Taniuchi,
The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251-278.
doi: 10.1007/s002090100332. |
[23] |
H.-L. Li, X. Xu and J. Zhang,
Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356-1387.
doi: 10.1137/120893355. |
[24] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2., Compressible Models, The Clarendon Press, Oxford University Press, New York, 1998.
![]() |
[25] |
B. Lü, Z. Xu and X. Zhong,
Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent magnetohydrodynamic equations with vacuum, J. Math. Pures Appl., 108 (2017), 41-62.
doi: 10.1016/j.matpur.2016.10.009. |
[26] |
L. Nirenberg,
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115-162.
doi: 10.1007/978-3-642-10926-3_1. |
[27] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27, Oxford University Press, Oxford, 2004.
![]() |
[28] |
T. Ozawa,
On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.
doi: 10.1006/jfan.1995.1012. |
[29] |
J. Simon,
Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.
doi: 10.1137/0521061. |
[30] |
Y. Sun, C. Wang and Z. Zhang,
A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch Ration. Mech. Anal., 201 (2011), 727-742.
doi: 10.1007/s00205-011-0407-1. |
[31] |
Y. Wang,
One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214-226.
doi: 10.1016/j.nonrwa.2013.09.020. |
[32] |
Z. Xin,
Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math, 51 (1998), 229-240.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[33] |
Z. Xin and W. Yan,
On blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (2013), 529-241.
doi: 10.1007/s00220-012-1610-0. |
[34] |
J. Zhang,
Global well-posedness for the incompressible Navier-Stokes equations with density-dependent viscosity coefficient, J. Differential Equations, 259 (2015), 1722-1742.
doi: 10.1016/j.jde.2015.03.011. |
[1] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[2] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[3] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[4] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[5] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[6] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[7] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[8] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[9] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[10] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[11] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[12] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[13] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[14] |
Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083 |
[15] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[16] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[17] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[18] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[19] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[20] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
2019 Impact Factor: 1.27
Tools
Article outline
[Back to Top]