November  2020, 25(11): 4361-4382. doi: 10.3934/dcdsb.2020101

Positive periodic solution for generalized Basener-Ross model

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, China

* Corresponding author: Zhibo Cheng

Received  September 2019 Revised  November 2019 Published  November 2020 Early access  April 2020

Fund Project: The first author is supported by National Natural Science Foundation of China (11501170), China Postdoctoral Science Foundation funded project (2016M590886), Young backbone teachers of colleges and universities in Henan Province (2017GGJS057), Fundamental Research Funds for the Universities of Henan Province (NSFRF170302)

This paper is devoted to the existence of at least one positive periodic solution for generalized Basener-Ross model with time-dependent coefficients. Our proof is based on Manásevich-Mawhin continuation theorem, Leray-Schauder alternative principle, fixed point theorem in cones. Moreover, we obtain that there are at least two positive periodic solutions for this model.

Citation: Zhibo Cheng, Xiaoxiao Cui. Positive periodic solution for generalized Basener-Ross model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4361-4382. doi: 10.3934/dcdsb.2020101
References:
[1]

P. Amarasekare, Effects of temperature on consumer-resource interactions, J. Animal Ecology, 84 (2015), 665-679.  doi: 10.1111/1365-2656.12320.

[2]

B. Basener and D. S. Ross, Booming and crashing populations and Easter Island, SIAM J. Appl. Math., 65 (2004/05), 684-701.  doi: 10.1137/S0036139903426952.

[3]

M. ChenM. FanX. Yuan and H. Zhu, Effect of seasonal changing temperature on the growth of phytoplankton, Math. Biosci. Eng., 14 (2017), 1091-1117.  doi: 10.3934/mbe.2017057.

[4]

Z. Cheng and F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Art. 134, 19 pp. doi: 10.1007/s00009-018-1184-y.

[5]

Z. Cheng and J. Ren, Periodic solution for second order damped differential equations with attractive-repulsive singularities, Rocky Mountain J. Math., 48 (2018), 753-768.  doi: 10.1216/RMJ-2018-48-3-753.

[6]

A. GranasR. B. Guenther and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl., 70 (1991), 153-196. 

[7]

F. Güngör and P. J. Torres, Integrability of the Basener-Ross model with time-dependent coefficients, SeMA J., 76 (2019), 485-493.  doi: 10.1007/s40324-019-00187-w.

[8]

A. HuppertB. BlasiusR. Olinky and L. Stone, A model for seasonal phytoplankton blooms, J. Theoret. Biol., 236 (2005), 276-290.  doi: 10.1016/j.jtbi.2005.03.012.

[9]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.  doi: 10.1006/jdeq.1998.3425.

[10]

D. O'Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-017-1517-1.

[11]

J. RenD. Zhu and H. Wang, Spreading-vanishing dichotomy in information diffusion in online social networks with intervention, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1843-1865.  doi: 10.3934/dcdsb.2018240.

[12]

Y. WangH. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett., 20 (2007), 110-115.  doi: 10.1016/j.aml.2006.02.028.

[13]

Y. Xu, D. Zhu and J. Ren, On a reaction-diffusion-advection system: Fixed boundary or free boundary, Electron. J. Qual. Theory Differ. Equ., (2018), Paper No. 26, 31 pp. doi: 10.14232/ejqtde.2018.1.26.

show all references

References:
[1]

P. Amarasekare, Effects of temperature on consumer-resource interactions, J. Animal Ecology, 84 (2015), 665-679.  doi: 10.1111/1365-2656.12320.

[2]

B. Basener and D. S. Ross, Booming and crashing populations and Easter Island, SIAM J. Appl. Math., 65 (2004/05), 684-701.  doi: 10.1137/S0036139903426952.

[3]

M. ChenM. FanX. Yuan and H. Zhu, Effect of seasonal changing temperature on the growth of phytoplankton, Math. Biosci. Eng., 14 (2017), 1091-1117.  doi: 10.3934/mbe.2017057.

[4]

Z. Cheng and F. Li, Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay, Mediterr. J. Math., 15 (2018), Art. 134, 19 pp. doi: 10.1007/s00009-018-1184-y.

[5]

Z. Cheng and J. Ren, Periodic solution for second order damped differential equations with attractive-repulsive singularities, Rocky Mountain J. Math., 48 (2018), 753-768.  doi: 10.1216/RMJ-2018-48-3-753.

[6]

A. GranasR. B. Guenther and J. W. Lee, Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl., 70 (1991), 153-196. 

[7]

F. Güngör and P. J. Torres, Integrability of the Basener-Ross model with time-dependent coefficients, SeMA J., 76 (2019), 485-493.  doi: 10.1007/s40324-019-00187-w.

[8]

A. HuppertB. BlasiusR. Olinky and L. Stone, A model for seasonal phytoplankton blooms, J. Theoret. Biol., 236 (2005), 276-290.  doi: 10.1016/j.jtbi.2005.03.012.

[9]

R. Manásevich and J. Mawhin, Periodic solutions for nonlinear systems with $p$-Laplacian-like operators, J. Differential Equations, 145 (1998), 367-393.  doi: 10.1006/jdeq.1998.3425.

[10]

D. O'Regan, Existence Theory for Nonlinear Ordinary Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/978-94-017-1517-1.

[11]

J. RenD. Zhu and H. Wang, Spreading-vanishing dichotomy in information diffusion in online social networks with intervention, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1843-1865.  doi: 10.3934/dcdsb.2018240.

[12]

Y. WangH. Lian and W. Ge, Periodic solutions for a second order nonlinear functional differential equation, Appl. Math. Lett., 20 (2007), 110-115.  doi: 10.1016/j.aml.2006.02.028.

[13]

Y. Xu, D. Zhu and J. Ren, On a reaction-diffusion-advection system: Fixed boundary or free boundary, Electron. J. Qual. Theory Differ. Equ., (2018), Paper No. 26, 31 pp. doi: 10.14232/ejqtde.2018.1.26.

[1]

Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015

[2]

Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022045

[3]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[4]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[5]

Daozhou Gao, Yijun Lou, Shigui Ruan. A periodic Ross-Macdonald model in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3133-3145. doi: 10.3934/dcdsb.2014.19.3133

[6]

Yukie Goto, Danielle Hilhorst, Ehud Meron, Roger Temam. Existence theorem for a model of dryland vegetation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 197-224. doi: 10.3934/dcdsb.2011.16.197

[7]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[8]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[9]

Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure and Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175

[10]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[12]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[13]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[14]

Meili Li, Maoan Han, Chunhai Kou. The existence of positive periodic solutions of a generalized. Mathematical Biosciences & Engineering, 2008, 5 (4) : 803-812. doi: 10.3934/mbe.2008.5.803

[15]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[16]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[17]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[18]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[19]

Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 427-440. doi: 10.3934/dcdss.2021083

[20]

Sylvia Anicic. Existence theorem for a first-order Koiter nonlinear shell model. Discrete and Continuous Dynamical Systems - S, 2019, 12 (6) : 1535-1545. doi: 10.3934/dcdss.2019106

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (234)
  • HTML views (246)
  • Cited by (0)

Other articles
by authors

[Back to Top]