November  2020, 25(11): 4383-4396. doi: 10.3934/dcdsb.2020102

Large time behavior in a predator-prey system with indirect pursuit-evasion interaction

1. 

College of Information and Technology, Donghua University, Shanghai 200051, China

2. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, P.R. China

3. 

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

Received  September 2019 Revised  November 2019 Published  November 2020 Early access  April 2020

In a bounded domain
$ \Omega\subset \mathbb{R}^n $
with smooth boundary, this work considers the indirect pursuit-evasion model
$ \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u -\chi\nabla \cdot(u \nabla w) +u(\lambda -u+a v), \\ v_t = \Delta v +\xi \nabla \cdot(v\nabla z) +v(\mu-v-b u), \\ 0 = \Delta w -w +v, \\ 0 = \Delta z -z +u, \end{array} \right. \end{eqnarray*} $
with positive parameters
$ \chi, \xi, \lambda, \mu $
,
$ a $
and
$ b $
.
It is firstly asserted that when
$ n\le 3 $
, for any given suitably regular initial data the corresponding homogeneous Neumann initial-boundary problem admits a global and bounded smooth solution. Moreover, it is shown that if
$ b\lambda<\mu $
and under some explicit smallness conditions on
$ \chi $
and
$ \xi $
, any nontrival bounded classical solution converges to the spatially homogeneous coexistence state in the large time limit; if
$ b\lambda>\mu $
, however, then under an explicit smallness assumption on
$ \chi $
but without any restriction on
$ \xi $
, any bounded classical solution
$ (u, v) $
with
$ u\not\equiv 0 $
stabilizes to
$ (\lambda, 0) $
as
$ t\to \infty $
.
Citation: Genglin Li, Youshan Tao, Michael Winkler. Large time behavior in a predator-prey system with indirect pursuit-evasion interaction. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4383-4396. doi: 10.3934/dcdsb.2020102
References:
[1]

P. AmorimB. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.

[2]

H. Bréezis and W. A. Strauss, Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.

[3]

T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system. Parabolic and Navier-Stokes equations, Part 1, Polish Acad. Sci. Inst. Math., Banach Center Publ., 81 (2008), 105–117. doi: 10.4064/bc81-0-7.

[4]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.

[5]

A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, Inc., New York-Montreal, Que.-London, 1969.

[6]

T. GoudonB. NkongaM. Rascle and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305 (2015), 1-22.  doi: 10.1016/j.physd.2015.03.012.

[7]

T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.  doi: 10.4310/CMS.2016.v14.n8.a7.

[8]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.

[9]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683. 

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.

[12]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.

[13]

P. Kareiva and G. Odell, Swarms of predators exhibit `preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[16]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.

[17]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.

[18]

Y. Tao and M. Winkler, Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. London Math. Soc., 119 (2019), 1598-1632.  doi: 10.1112/plms.12276.

[19]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[20]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.

[21]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.

[22]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.

[23]

M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102. doi: 10.1103/PhysRevLett.91.218102.

[24]

M. A. TsyganovI. B. KrestevaA. B. Medvinsky and G. R. Ivanitsky, A novel mode bacterial population wave interaction, Dokl. Akad. Nauk, 333 (1993), 532-536. 

[25]

Y. TyutyunovL. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.  doi: 10.1051/mmnp:2008028.

[26]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.

[27]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1. doi: 10.1016/j.matpur.2013.01.020.

[28]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.

[29]

T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.  doi: 10.1016/j.nonrwa.2017.07.001.

show all references

References:
[1]

P. AmorimB. Telch and L. M. Villada, A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing, Math. Biosci. Eng., 16 (2019), 5114-5145.  doi: 10.3934/mbe.2019257.

[2]

H. Bréezis and W. A. Strauss, Semilinear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.  doi: 10.2969/jmsj/02540565.

[3]

T. Cieślak, P. Laurençot and C. Morales-Rodrigo, Global existence and convergence to steady-states in a chemorepulsion system. Parabolic and Navier-Stokes equations, Part 1, Polish Acad. Sci. Inst. Math., Banach Center Publ., 81 (2008), 105–117. doi: 10.4064/bc81-0-7.

[4]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.  doi: 10.1088/0951-7715/21/5/009.

[5]

A. Friedman, Partial Differential Equations, Holt, Rinehart & Winston, Inc., New York-Montreal, Que.-London, 1969.

[6]

T. GoudonB. NkongaM. Rascle and M. Ribot, Self-organized populations interacting under pursuit-evasion dynamics, Phys. D, 304/305 (2015), 1-22.  doi: 10.1016/j.physd.2015.03.012.

[7]

T. Goudon and L. Urrutia, Analysis of kinetic and macroscopic models of pursuit-evasion dynamics, Commun. Math. Sci., 14 (2016), 2253-2286.  doi: 10.4310/CMS.2016.v14.n8.a7.

[8]

X. He and S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73-77.  doi: 10.1016/j.aml.2015.04.017.

[9]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633-683. 

[10]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 

[11]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.

[12]

H.-Y. Jin and Z.-A. Wang, Global stability of prey-taxis systems, J. Differential Equations, 262 (2017), 1257-1290.  doi: 10.1016/j.jde.2016.10.010.

[13]

P. Kareiva and G. Odell, Swarms of predators exhibit `preytaxis' if individual predators use area-restricted search, The American Naturalist, 130 (1987), 233-270.  doi: 10.1086/284707.

[14]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.

[15]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[16]

Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056-2064.  doi: 10.1016/j.nonrwa.2009.05.005.

[17]

Y. Tao and Z.-A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36.  doi: 10.1142/S0218202512500443.

[18]

Y. Tao and M. Winkler, Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. London Math. Soc., 119 (2019), 1598-1632.  doi: 10.1112/plms.12276.

[19]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.

[20]

Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.

[21]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.  doi: 10.1016/j.jde.2011.07.010.

[22]

Y. Tao and M. Winkler, Global smooth solvability of a parabolic-elliptic nutrient taxis system in domains of arbitrary dimension, J. Differential Equations, 267 (2019), 388-406.  doi: 10.1016/j.jde.2019.01.014.

[23]

M. A. Tsyganov, J. Brindley, A. V. Holden and V. N. Biktashev, Quasi-soliton interaction of pursuit-evasion waves in a predator-prey system, Phys. Rev. Lett., 91 (2003), 218102. doi: 10.1103/PhysRevLett.91.218102.

[24]

M. A. TsyganovI. B. KrestevaA. B. Medvinsky and G. R. Ivanitsky, A novel mode bacterial population wave interaction, Dokl. Akad. Nauk, 333 (1993), 532-536. 

[25]

Y. TyutyunovL. Titova and R. Arditi, A minimal model of pursuit-evasion in a predator-prey system, Math. Model. Nat. Phenom., 2 (2007), 122-134.  doi: 10.1051/mmnp:2008028.

[26]

M. Winkler, Asymptotic homogenization in a three-dimensional nutrient taxis system involving food-supported proliferation, J. Differential Equations, 263 (2017), 4826-4869.  doi: 10.1016/j.jde.2017.06.002.

[27]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1. doi: 10.1016/j.matpur.2013.01.020.

[28]

S. WuJ. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differential Equations, 260 (2016), 5847-5874.  doi: 10.1016/j.jde.2015.12.024.

[29]

T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018), 278-299.  doi: 10.1016/j.nonrwa.2017.07.001.

[1]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[2]

Sainan Wu, Junping Shi, Boying Wu. Global existence of solutions to an attraction-repulsion chemotaxis model with growth. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1037-1058. doi: 10.3934/cpaa.2017050

[3]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[4]

Aichao Liu, Binxiang Dai, Yuming Chen. Boundedness in a two species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021306

[5]

Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197

[6]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[7]

Rachidi B. Salako. Traveling waves of a full parabolic attraction-repulsion chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5945-5973. doi: 10.3934/dcds.2019260

[8]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic and Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[9]

Miaoqing Tian, Shujuan Wang, Xia Xiao. Global boundedness in a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022071

[10]

Lianzhang Bao, Wenxian Shen. Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 1107-1130. doi: 10.3934/dcds.2020072

[11]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[12]

Runlin Hu, Pan Zheng. On a quasilinear fully parabolic attraction or repulsion chemotaxis system with nonlinear signal production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022041

[13]

Yu Ma, Chunlai Mu, Shuyan Qiu. Boundedness and asymptotic stability in a two-species predator-prey chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4077-4095. doi: 10.3934/dcdsb.2021218

[14]

Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703

[15]

Yanfei Du, Ben Niu, Junjie Wei. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021298

[16]

Fei Xu, Ross Cressman, Vlastimil Křivan. Evolution of mobility in predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3397-3432. doi: 10.3934/dcdsb.2014.19.3397

[17]

Jing-An Cui, Xinyu Song. Permanence of predator-prey system with stage structure. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 547-554. doi: 10.3934/dcdsb.2004.4.547

[18]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[19]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[20]

Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (407)
  • HTML views (268)
  • Cited by (0)

Other articles
by authors

[Back to Top]