-
Previous Article
Modelling fungal competition for space:Towards prediction of community dynamics
- DCDS-B Home
- This Issue
-
Next Article
Large time behavior in a predator-prey system with indirect pursuit-evasion interaction
Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition
School of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China |
In this paper we study existence of nonradial stationary solutions of a free boundary problem modeling the growth of nonnecrotic tumors. Unlike the models studied in existing literatures on this topic where boundary value condition for the nutrient concentration $ \sigma $ is linear, in this model this is a nonlinear boundary condition. By using the bifurcation method, we prove that nonradial stationary solutions do exist when the surface tension coefficient $ \gamma $ takes values in small neighborhoods of certain eigenvalues of the linearized problem at the radial stationary solution.
References:
[1] |
A. Borisovich and A. Friedman,
Symmetric-breaking bifurcation for free boundary problems, Indiana Univ. Math. J., 54 (2005), 927-947.
doi: 10.1512/iumj.2005.54.2473. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
S. Cui,
Analysis of a free boundary problem modelling tumor growth, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1071-1082.
doi: 10.1007/s10114-004-0483-3. |
[4] |
S. Cui and J. Escher,
Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33 (2008), 636-655.
doi: 10.1080/03605300701743848. |
[5] |
S. Cui and J. Escher,
Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235.
doi: 10.1137/060657509. |
[6] |
S. Cui and Y. Zhuang,
Bifurcation solutions of a free boundary problem modeling tumor growth with angiogenesis, J. Math. Anal. Appl., 468 (2018), 391-405.
doi: 10.1016/j.jmaa.2018.08.022. |
[7] |
J. Escher and A.-V. Matioc,
Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math. (Basel), 97 (2011), 79-90.
doi: 10.1007/s00013-011-0276-8. |
[8] |
J. Escher and G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 1997, 1028–1047.
doi: 10.1137/S0036141095291919. |
[9] |
M. A. Fontelos and A. Friedman,
Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal., 35 (2003), 187-206.
|
[10] |
A. Friedman and B. Hu,
Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.
doi: 10.1137/060656292. |
[11] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Rational Mech. Anal., 180 (2006), 293-330.
doi: 10.1007/s00205-005-0408-z. |
[12] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl., 327 (2007), 643-664.
doi: 10.1016/j.jmaa.2006.04.034. |
[13] |
A. Friedman and K.-Y. Lam,
Analysis of a free-boundary tumor model with angiogenesis, J. Differential Equations, 259 (2015), 7636-7661.
doi: 10.1016/j.jde.2015.08.032. |
[14] |
A. Friedman and F. Reitich,
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.
doi: 10.1090/S0002-9947-00-02715-X. |
[15] |
Y. Huang, Z. Zhang and B. Hu,
Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl., 35 (2017), 483-502.
doi: 10.1016/j.nonrwa.2016.12.003. |
[16] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.
![]() ![]() |
[17] |
Z. Wang,
Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl., 19 (2014), 45-53.
doi: 10.1016/j.nonrwa.2014.03.001. |
[18] |
J. Wu,
Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Contin. Dyn. Syst., 39 (2019), 3399-3411.
doi: 10.3934/dcds.2019140. |
[19] |
J. Wu and S. Cui,
Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci., 38 (2015), 1813-1823.
doi: 10.1002/mma.3190. |
[20] |
J. Zheng and S. Cui,
Analysis of a tumor-model free boundary problem with a nonliear boundary condition, J. Math. Anal. Appl., 478 (2019), 806-824.
doi: 10.1016/j.jmaa.2019.05.056. |
[21] |
F. Zhou and S. Cui,
Bifurcation for a free boundary problem modeling the growth of multi-layer tumors, Nonlinear Anal., 68 (2008), 2128-2145.
doi: 10.1016/j.na.2007.01.036. |
[22] |
F. Zhou, J. Escher and S. Cui,
Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl., 337 (2008), 443-457.
doi: 10.1016/j.jmaa.2007.03.107. |
[23] |
Y. Zhuang and S. Cui,
Analysis of a free boundary problem modeling the growth of multicell spheroids with angiogenesis, J. Differential Equations, 265 (2018), 620-644.
doi: 10.1016/j.jde.2018.03.005. |
show all references
References:
[1] |
A. Borisovich and A. Friedman,
Symmetric-breaking bifurcation for free boundary problems, Indiana Univ. Math. J., 54 (2005), 927-947.
doi: 10.1512/iumj.2005.54.2473. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
S. Cui,
Analysis of a free boundary problem modelling tumor growth, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1071-1082.
doi: 10.1007/s10114-004-0483-3. |
[4] |
S. Cui and J. Escher,
Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33 (2008), 636-655.
doi: 10.1080/03605300701743848. |
[5] |
S. Cui and J. Escher,
Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235.
doi: 10.1137/060657509. |
[6] |
S. Cui and Y. Zhuang,
Bifurcation solutions of a free boundary problem modeling tumor growth with angiogenesis, J. Math. Anal. Appl., 468 (2018), 391-405.
doi: 10.1016/j.jmaa.2018.08.022. |
[7] |
J. Escher and A.-V. Matioc,
Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math. (Basel), 97 (2011), 79-90.
doi: 10.1007/s00013-011-0276-8. |
[8] |
J. Escher and G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 1997, 1028–1047.
doi: 10.1137/S0036141095291919. |
[9] |
M. A. Fontelos and A. Friedman,
Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal., 35 (2003), 187-206.
|
[10] |
A. Friedman and B. Hu,
Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.
doi: 10.1137/060656292. |
[11] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Rational Mech. Anal., 180 (2006), 293-330.
doi: 10.1007/s00205-005-0408-z. |
[12] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl., 327 (2007), 643-664.
doi: 10.1016/j.jmaa.2006.04.034. |
[13] |
A. Friedman and K.-Y. Lam,
Analysis of a free-boundary tumor model with angiogenesis, J. Differential Equations, 259 (2015), 7636-7661.
doi: 10.1016/j.jde.2015.08.032. |
[14] |
A. Friedman and F. Reitich,
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.
doi: 10.1090/S0002-9947-00-02715-X. |
[15] |
Y. Huang, Z. Zhang and B. Hu,
Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl., 35 (2017), 483-502.
doi: 10.1016/j.nonrwa.2016.12.003. |
[16] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.
![]() ![]() |
[17] |
Z. Wang,
Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl., 19 (2014), 45-53.
doi: 10.1016/j.nonrwa.2014.03.001. |
[18] |
J. Wu,
Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Contin. Dyn. Syst., 39 (2019), 3399-3411.
doi: 10.3934/dcds.2019140. |
[19] |
J. Wu and S. Cui,
Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci., 38 (2015), 1813-1823.
doi: 10.1002/mma.3190. |
[20] |
J. Zheng and S. Cui,
Analysis of a tumor-model free boundary problem with a nonliear boundary condition, J. Math. Anal. Appl., 478 (2019), 806-824.
doi: 10.1016/j.jmaa.2019.05.056. |
[21] |
F. Zhou and S. Cui,
Bifurcation for a free boundary problem modeling the growth of multi-layer tumors, Nonlinear Anal., 68 (2008), 2128-2145.
doi: 10.1016/j.na.2007.01.036. |
[22] |
F. Zhou, J. Escher and S. Cui,
Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl., 337 (2008), 443-457.
doi: 10.1016/j.jmaa.2007.03.107. |
[23] |
Y. Zhuang and S. Cui,
Analysis of a free boundary problem modeling the growth of multicell spheroids with angiogenesis, J. Differential Equations, 265 (2018), 620-644.
doi: 10.1016/j.jde.2018.03.005. |
[1] |
Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129 |
[2] |
Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105 |
[3] |
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293 |
[4] |
Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045 |
[5] |
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 |
[6] |
Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997 |
[7] |
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497 |
[8] |
Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357 |
[9] |
Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 |
[10] |
Toyohiko Aiki. On the existence of a weak solution to a free boundary problem for a model of a shape memory alloy spring. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 1-13. doi: 10.3934/dcdss.2012.5.1 |
[11] |
Junde Wu. Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3399-3411. doi: 10.3934/dcds.2019140 |
[12] |
Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129 |
[13] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[14] |
Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337 |
[15] |
Xiaofeng Ren. Shell structure as solution to a free boundary problem from block copolymer morphology. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 979-1003. doi: 10.3934/dcds.2009.24.979 |
[16] |
Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086 |
[17] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[18] |
Chonghu Guan, Fahuai Yi, Xiaoshan Chen. A fully nonlinear free boundary problem arising from optimal dividend and risk control model. Mathematical Control and Related Fields, 2019, 9 (3) : 425-452. doi: 10.3934/mcrf.2019020 |
[19] |
G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279 |
[20] |
Byung-Hoon Hwang, Seok-Bae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic and Related Models, 2019, 12 (4) : 749-764. doi: 10.3934/krm.2019029 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]