-
Previous Article
Modelling fungal competition for space:Towards prediction of community dynamics
- DCDS-B Home
- This Issue
-
Next Article
Large time behavior in a predator-prey system with indirect pursuit-evasion interaction
Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition
School of Mathematics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China |
In this paper we study existence of nonradial stationary solutions of a free boundary problem modeling the growth of nonnecrotic tumors. Unlike the models studied in existing literatures on this topic where boundary value condition for the nutrient concentration $ \sigma $ is linear, in this model this is a nonlinear boundary condition. By using the bifurcation method, we prove that nonradial stationary solutions do exist when the surface tension coefficient $ \gamma $ takes values in small neighborhoods of certain eigenvalues of the linearized problem at the radial stationary solution.
References:
[1] |
A. Borisovich and A. Friedman,
Symmetric-breaking bifurcation for free boundary problems, Indiana Univ. Math. J., 54 (2005), 927-947.
doi: 10.1512/iumj.2005.54.2473. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
S. Cui,
Analysis of a free boundary problem modelling tumor growth, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1071-1082.
doi: 10.1007/s10114-004-0483-3. |
[4] |
S. Cui and J. Escher,
Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33 (2008), 636-655.
doi: 10.1080/03605300701743848. |
[5] |
S. Cui and J. Escher,
Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235.
doi: 10.1137/060657509. |
[6] |
S. Cui and Y. Zhuang,
Bifurcation solutions of a free boundary problem modeling tumor growth with angiogenesis, J. Math. Anal. Appl., 468 (2018), 391-405.
doi: 10.1016/j.jmaa.2018.08.022. |
[7] |
J. Escher and A.-V. Matioc,
Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math. (Basel), 97 (2011), 79-90.
doi: 10.1007/s00013-011-0276-8. |
[8] |
J. Escher and G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 1997, 1028–1047.
doi: 10.1137/S0036141095291919. |
[9] |
M. A. Fontelos and A. Friedman,
Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal., 35 (2003), 187-206.
|
[10] |
A. Friedman and B. Hu,
Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.
doi: 10.1137/060656292. |
[11] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Rational Mech. Anal., 180 (2006), 293-330.
doi: 10.1007/s00205-005-0408-z. |
[12] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl., 327 (2007), 643-664.
doi: 10.1016/j.jmaa.2006.04.034. |
[13] |
A. Friedman and K.-Y. Lam,
Analysis of a free-boundary tumor model with angiogenesis, J. Differential Equations, 259 (2015), 7636-7661.
doi: 10.1016/j.jde.2015.08.032. |
[14] |
A. Friedman and F. Reitich,
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.
doi: 10.1090/S0002-9947-00-02715-X. |
[15] |
Y. Huang, Z. Zhang and B. Hu,
Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl., 35 (2017), 483-502.
doi: 10.1016/j.nonrwa.2016.12.003. |
[16] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.
![]() |
[17] |
Z. Wang,
Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl., 19 (2014), 45-53.
doi: 10.1016/j.nonrwa.2014.03.001. |
[18] |
J. Wu,
Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Contin. Dyn. Syst., 39 (2019), 3399-3411.
doi: 10.3934/dcds.2019140. |
[19] |
J. Wu and S. Cui,
Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci., 38 (2015), 1813-1823.
doi: 10.1002/mma.3190. |
[20] |
J. Zheng and S. Cui,
Analysis of a tumor-model free boundary problem with a nonliear boundary condition, J. Math. Anal. Appl., 478 (2019), 806-824.
doi: 10.1016/j.jmaa.2019.05.056. |
[21] |
F. Zhou and S. Cui,
Bifurcation for a free boundary problem modeling the growth of multi-layer tumors, Nonlinear Anal., 68 (2008), 2128-2145.
doi: 10.1016/j.na.2007.01.036. |
[22] |
F. Zhou, J. Escher and S. Cui,
Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl., 337 (2008), 443-457.
doi: 10.1016/j.jmaa.2007.03.107. |
[23] |
Y. Zhuang and S. Cui,
Analysis of a free boundary problem modeling the growth of multicell spheroids with angiogenesis, J. Differential Equations, 265 (2018), 620-644.
doi: 10.1016/j.jde.2018.03.005. |
show all references
References:
[1] |
A. Borisovich and A. Friedman,
Symmetric-breaking bifurcation for free boundary problems, Indiana Univ. Math. J., 54 (2005), 927-947.
doi: 10.1512/iumj.2005.54.2473. |
[2] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Functional Analysis, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[3] |
S. Cui,
Analysis of a free boundary problem modelling tumor growth, Acta Math. Sin. (Engl. Ser.), 21 (2005), 1071-1082.
doi: 10.1007/s10114-004-0483-3. |
[4] |
S. Cui and J. Escher,
Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Partial Differential Equations, 33 (2008), 636-655.
doi: 10.1080/03605300701743848. |
[5] |
S. Cui and J. Escher,
Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235.
doi: 10.1137/060657509. |
[6] |
S. Cui and Y. Zhuang,
Bifurcation solutions of a free boundary problem modeling tumor growth with angiogenesis, J. Math. Anal. Appl., 468 (2018), 391-405.
doi: 10.1016/j.jmaa.2018.08.022. |
[7] |
J. Escher and A.-V. Matioc,
Bifurcation analysis for a free boundary problem modeling tumor growth, Arch. Math. (Basel), 97 (2011), 79-90.
doi: 10.1007/s00013-011-0276-8. |
[8] |
J. Escher and G. Simonett, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 1997, 1028–1047.
doi: 10.1137/S0036141095291919. |
[9] |
M. A. Fontelos and A. Friedman,
Symmetry-breaking bifurcations of free boundary problems in three dimensions, Asymptot. Anal., 35 (2003), 187-206.
|
[10] |
A. Friedman and B. Hu,
Bifurcation for a free boundary problem modeling tumor growth by Stokes equation, SIAM J. Math. Anal., 39 (2007), 174-194.
doi: 10.1137/060656292. |
[11] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem arising in a tumor model, Arch. Rational Mech. Anal., 180 (2006), 293-330.
doi: 10.1007/s00205-005-0408-z. |
[12] |
A. Friedman and B. Hu,
Bifurcation from stability to instability for a free boundary problem modeling tumor growth by Stokes equation, J. Math. Anal. Appl., 327 (2007), 643-664.
doi: 10.1016/j.jmaa.2006.04.034. |
[13] |
A. Friedman and K.-Y. Lam,
Analysis of a free-boundary tumor model with angiogenesis, J. Differential Equations, 259 (2015), 7636-7661.
doi: 10.1016/j.jde.2015.08.032. |
[14] |
A. Friedman and F. Reitich,
Symmetry-breaking bifurcation of analytic solutions to free boundary problems: An application to a model of tumor growth, Trans. Amer. Math. Soc., 353 (2001), 1587-1634.
doi: 10.1090/S0002-9947-00-02715-X. |
[15] |
Y. Huang, Z. Zhang and B. Hu,
Bifurcation for a free-boundary tumor model with angiogenesis, Nonlinear Anal. Real World Appl., 35 (2017), 483-502.
doi: 10.1016/j.nonrwa.2016.12.003. |
[16] |
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971.
![]() |
[17] |
Z. Wang,
Bifurcation for a free boundary problem modeling tumor growth with inhibitors, Nonlinear Anal. Real World Appl., 19 (2014), 45-53.
doi: 10.1016/j.nonrwa.2014.03.001. |
[18] |
J. Wu,
Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors, Discrete Contin. Dyn. Syst., 39 (2019), 3399-3411.
doi: 10.3934/dcds.2019140. |
[19] |
J. Wu and S. Cui,
Bifurcation analysis of a mathematical model for the growth of solid tumors in the presence of external inhibitors, Math. Methods Appl. Sci., 38 (2015), 1813-1823.
doi: 10.1002/mma.3190. |
[20] |
J. Zheng and S. Cui,
Analysis of a tumor-model free boundary problem with a nonliear boundary condition, J. Math. Anal. Appl., 478 (2019), 806-824.
doi: 10.1016/j.jmaa.2019.05.056. |
[21] |
F. Zhou and S. Cui,
Bifurcation for a free boundary problem modeling the growth of multi-layer tumors, Nonlinear Anal., 68 (2008), 2128-2145.
doi: 10.1016/j.na.2007.01.036. |
[22] |
F. Zhou, J. Escher and S. Cui,
Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors, J. Math. Anal. Appl., 337 (2008), 443-457.
doi: 10.1016/j.jmaa.2007.03.107. |
[23] |
Y. Zhuang and S. Cui,
Analysis of a free boundary problem modeling the growth of multicell spheroids with angiogenesis, J. Differential Equations, 265 (2018), 620-644.
doi: 10.1016/j.jde.2018.03.005. |
[1] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[2] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[3] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[4] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[5] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[6] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[7] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[8] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[9] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[10] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[11] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[12] |
Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083 |
[13] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[14] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[15] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[16] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[17] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[18] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[19] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[20] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]