
-
Previous Article
Kink solitary solutions to a hepatitis C evolution model
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition
Modelling fungal competition for space:Towards prediction of community dynamics
1. | ORCID: 0000-0003-4452-7106, Department of Mathematics, Swansea University, Bay Campus, Swansea, SA1 8EN, UK |
2. | ORCID: 0000-0003-1544-0407, Department of Biosciences, Swansea University, Singleton Park Campus, Swansea, SA2 8PP, UK |
3. | ORCID: 0000-0003-0486-5450, Department of Mathematics, Swansea University, Bay Campus, Swansea, SA1 8EN, UK |
Filamentous fungi contribute to ecosystem and human-induced processes such as primary production, bioremediation, biogeochemical cycling and biocontrol. Predicting the dynamics of fungal communities can hence improve our forecasts of ecological processes which depend on fungal community structure. In this work, we aimed to develop simple theoretical models of fungal interactions with ordinary and partial differential equations, and to validate model predictions against community dynamics of a three species empirical system. We found that space is an important factor for the prediction of community dynamics, since the performance was poor for models of ordinary differential equations assuming well-mixed nutrient substrate. The models of partial differential equations could satisfactorily predict the dynamics of a single species, but exhibited limitations which prevented the prediction of empirical community dynamics. One such limitation is the arbitrary choice of a threshold local density above which a fungal mycelium is considered present in the model. In conclusion, spatially explicit simulation models, able to incorporate different factors influencing interaction outcomes and hence dynamics, appear as a more promising direction towards prediction of fungal community dynamics.
References:
[1] |
L. Boddy,
Interspecific combative interactions between wood-decaying basidiomycetes, FEMS Microbiology Ecology, 31 (2000), 185-194.
doi: 10.1111/j.1574-6941.2000.tb00683.x. |
[2] |
L. Boddy,
Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments, Mycologia, 91 (1999), 13-32.
doi: 10.2307/3761190. |
[3] |
G. P. Boswell,
Modelling combat strategies in fungal mycelia, Journal of Theoretical Biology, 304 (2012), 226-234.
doi: 10.1016/j.jtbi.2012.03.036. |
[4] |
J. L. Bown, C. J. Sturrock, W. B. Samson, H. J. Staines, J. W. Palfreyman, N. A. White, K. Ritz and J. W. Crawford,
Evidence for emergent behaviour in the community-scale dynamics of a fungal microcosm, Proceedings of the Royal Society B – Biological Sciences, 266 (1999), 1947-1952.
doi: 10.1098/rspb.1999.0871. |
[5] |
R. W. Buchkowski, M. A. Bradford, A. S. Grandy, O. J. Schmitz and W. R. Wieder,
Applying population and community ecology theory to advance understanding of belowground biogeochemistry, Ecology Letters, 20 (2017), 231-245.
doi: 10.1111/ele.12712. |
[6] |
I. H. Chapela, L. Boddy and A. D. M. Rayner,
Structure and development of fungal communities in beech logs four and a half years after felling, FEMS Microbiology Ecology, 53 (1988), 59-69.
doi: 10.1111/j.1574-6968.1988.tb02648.x. |
[7] |
M. J. A. Choudhury, P. M. Trevelyan and G. P. Boswell,
A mathematical model of nutrient influence on fungal competition, Journal of Theoretical Biology, 438 (2018), 9-20.
doi: 10.1016/j.jtbi.2017.11.006. |
[8] |
D. Coates and A. D. M. Rayner,
Fungal population and community development in cut beech logs. Ⅲ. Spatial dynamics, interactions and strategies, New Phytologist, 101 (1985), 183-198.
doi: 10.1111/j.1469-8137.1985.tb02825.x. |
[9] |
F. A. Davidson, B. D. Sleeman, A. D. M. Rayner, J. W. Crawford and K. Ritz,
Context-dependent macroscopic patterns in growing and interacting mycelial networks, Proceedings of the Royal Society B – Biological Sciences, 263 (1996), 873-880.
doi: 10.1098/rspb.1996.0129. |
[10] |
R. E. Falconer, J. L. Bown, N. A. White and J. W. Crawford,
Modelling interactions in fungi, Journal of the Royal Society Interface, 5 (2008), 603-615.
doi: 10.1098/rsif.2007.1210. |
[11] |
M. D. Fricker, L. L. M. Heaton, N. S. Jones and L. Boddy,
The mycelium as a network, Microbiology Spectrum, 5 (2017), 1-32.
doi: 10.1128/microbiolspec.FUNK-0033-2017. |
[12] |
J. M. Halley, H. N. Comins, J. H. Lawton and M. P. Hassell,
Competition, succession and pattern in fungal communities: Towards a cellular automaton model, Oikos, 70 (1994), 435-442.
doi: 10.2307/3545783. |
[13] |
J. Hiscox and L. Boddy,
Armed and dangerous – chemical warfare in wood decay communities, Fungal Biology Reviews, 31 (2017), 169-184.
doi: 10.1016/j.fbr.2017.07.001. |
[14] |
J. Hiscox, M. Savoury, I. P. Vaughan, C. T. Müller and L. Boddy,
Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood, Fungal Ecology, 14 (2015), 24-32.
doi: 10.1016/j.funeco.2014.11.001. |
[15] |
L. Holmer and J. Stenlid,
The importance of inoculum size for the competitive ability of wood decomposing fungi, FEMS Microbiology Ecology, 12 (1993), 169-176.
doi: 10.1111/j.1574-6941.1993.tb00029.x. |
[16] |
P. Kennedy,
Ectomycorrhizal fungi and interspecific competition: Species interactions, community structure, coexistence mechanisms, and future research directions, New Phytologist, 187 (2010), 895-910.
doi: 10.1111/j.1469-8137.2010.03399.x. |
[17] |
D. A. Kolesidis, L. Boddy, D. C. Eastwood, C. Yuan and M. S. Fowler,
Predicting fungal community dynamics driven by competition for space, Fungal Ecology, 41 (2019), 13-22.
doi: 10.1016/j.funeco.2019.04.003. |
[18] |
K. L. McGuire and K. K. Treseder,
Microbial communities and their relevance for ecosystem models: Decomposition as a case study, Soil Biology and Biochemistry, 42 (2010), 529-535.
doi: 10.1016/j.soilbio.2009.11.016. |
[19] |
H. V. Moeller and K. G. Peay, Competition-function tradeoffs in ectomycorrhizal fungi, PeerJ, 4 (2016), e2270.
doi: 10.7717/peerj.2270. |
[20] |
J. Oliva, M. Messal, L. Wendt and M. Elfstrand,
Quantitative interactions between the biocontrol fungus Phlebiopsis gigantea, the forest pathogen Heterobasidion annosum and the fungal community inhabiting Norway spruce stumps, Forest Ecology and Management, 402 (2017), 253-264.
doi: 10.1016/j.foreco.2017.07.046. |
[21] |
N. J. B. Plomley,
Formation of the colony in the fungus Chaetomium, Australian Journal of Biological Sciences, 12 (1959), 53-64.
doi: 10.1071/BI9590053. |
[22] |
J. I. Prosser, N. A. R. Gow and G. M. Gadd (eds.), Kinetics of filamentous growth and branching, in The Growing Fungus, Springer, Dordrecht, (1995), 301–318.
doi: 10.1007/978-0-585-27576-5_14. |
[23] |
J. I. Prosser and A. P. J. Trinci,
A model for hyphal growth and branching, Microbiology, 111 (1979), 153-164.
doi: 10.1099/00221287-111-1-153. |
[24] |
W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, available from: https://imagej.nih.gov/ij/ (cited 17 Dec 2018). Google Scholar |
[25] |
T. Stella, S. Covino, M. Čvančarová, A. Filipová, M. Petruccioli, A. D'Annibale and T. Cajthaml,
Bioremediation of long-term PCB-contaminated soil by white-rot fungi, Journal of Hazardous Materials, 324 (2017), 701-710.
doi: 10.1016/j.jhazmat.2016.11.044. |
[26] |
W. Thompson and A. D. M. Rayner,
Extent, development and function of mycelial cord systems in soil, Transactions of the British Mycological Society, 81 (1983), 333-345.
doi: 10.1016/S0007-1536(83)80085-0. |
[27] |
R. Toral and P. Colet, Introduction to master equations, in Stochastic Numerical Methods: An Introduction for Students and Scientists, Wiley-VCH, Weinheim, (2014), 235–260.
doi: 10.1002/9783527683147.ch8. |
[28] |
A. van der Wal, T. D. Geydan, T. W. Kuyper and W. de Boer,
A thready affair: Linking fungal diversity and community dynamics to terrestrial decomposition processes, FEMS Microbiology Reviews, 37 (2013), 477-494.
doi: 10.1111/1574-6976.12001. |
[29] |
V. Volpert and S. Petrovskii,
Reaction–diffusion waves in biology, Physics of Life Reviews, 6 (2009), 267-310.
doi: 10.1016/j.plrev.2009.10.002. |
show all references
References:
[1] |
L. Boddy,
Interspecific combative interactions between wood-decaying basidiomycetes, FEMS Microbiology Ecology, 31 (2000), 185-194.
doi: 10.1111/j.1574-6941.2000.tb00683.x. |
[2] |
L. Boddy,
Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments, Mycologia, 91 (1999), 13-32.
doi: 10.2307/3761190. |
[3] |
G. P. Boswell,
Modelling combat strategies in fungal mycelia, Journal of Theoretical Biology, 304 (2012), 226-234.
doi: 10.1016/j.jtbi.2012.03.036. |
[4] |
J. L. Bown, C. J. Sturrock, W. B. Samson, H. J. Staines, J. W. Palfreyman, N. A. White, K. Ritz and J. W. Crawford,
Evidence for emergent behaviour in the community-scale dynamics of a fungal microcosm, Proceedings of the Royal Society B – Biological Sciences, 266 (1999), 1947-1952.
doi: 10.1098/rspb.1999.0871. |
[5] |
R. W. Buchkowski, M. A. Bradford, A. S. Grandy, O. J. Schmitz and W. R. Wieder,
Applying population and community ecology theory to advance understanding of belowground biogeochemistry, Ecology Letters, 20 (2017), 231-245.
doi: 10.1111/ele.12712. |
[6] |
I. H. Chapela, L. Boddy and A. D. M. Rayner,
Structure and development of fungal communities in beech logs four and a half years after felling, FEMS Microbiology Ecology, 53 (1988), 59-69.
doi: 10.1111/j.1574-6968.1988.tb02648.x. |
[7] |
M. J. A. Choudhury, P. M. Trevelyan and G. P. Boswell,
A mathematical model of nutrient influence on fungal competition, Journal of Theoretical Biology, 438 (2018), 9-20.
doi: 10.1016/j.jtbi.2017.11.006. |
[8] |
D. Coates and A. D. M. Rayner,
Fungal population and community development in cut beech logs. Ⅲ. Spatial dynamics, interactions and strategies, New Phytologist, 101 (1985), 183-198.
doi: 10.1111/j.1469-8137.1985.tb02825.x. |
[9] |
F. A. Davidson, B. D. Sleeman, A. D. M. Rayner, J. W. Crawford and K. Ritz,
Context-dependent macroscopic patterns in growing and interacting mycelial networks, Proceedings of the Royal Society B – Biological Sciences, 263 (1996), 873-880.
doi: 10.1098/rspb.1996.0129. |
[10] |
R. E. Falconer, J. L. Bown, N. A. White and J. W. Crawford,
Modelling interactions in fungi, Journal of the Royal Society Interface, 5 (2008), 603-615.
doi: 10.1098/rsif.2007.1210. |
[11] |
M. D. Fricker, L. L. M. Heaton, N. S. Jones and L. Boddy,
The mycelium as a network, Microbiology Spectrum, 5 (2017), 1-32.
doi: 10.1128/microbiolspec.FUNK-0033-2017. |
[12] |
J. M. Halley, H. N. Comins, J. H. Lawton and M. P. Hassell,
Competition, succession and pattern in fungal communities: Towards a cellular automaton model, Oikos, 70 (1994), 435-442.
doi: 10.2307/3545783. |
[13] |
J. Hiscox and L. Boddy,
Armed and dangerous – chemical warfare in wood decay communities, Fungal Biology Reviews, 31 (2017), 169-184.
doi: 10.1016/j.fbr.2017.07.001. |
[14] |
J. Hiscox, M. Savoury, I. P. Vaughan, C. T. Müller and L. Boddy,
Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood, Fungal Ecology, 14 (2015), 24-32.
doi: 10.1016/j.funeco.2014.11.001. |
[15] |
L. Holmer and J. Stenlid,
The importance of inoculum size for the competitive ability of wood decomposing fungi, FEMS Microbiology Ecology, 12 (1993), 169-176.
doi: 10.1111/j.1574-6941.1993.tb00029.x. |
[16] |
P. Kennedy,
Ectomycorrhizal fungi and interspecific competition: Species interactions, community structure, coexistence mechanisms, and future research directions, New Phytologist, 187 (2010), 895-910.
doi: 10.1111/j.1469-8137.2010.03399.x. |
[17] |
D. A. Kolesidis, L. Boddy, D. C. Eastwood, C. Yuan and M. S. Fowler,
Predicting fungal community dynamics driven by competition for space, Fungal Ecology, 41 (2019), 13-22.
doi: 10.1016/j.funeco.2019.04.003. |
[18] |
K. L. McGuire and K. K. Treseder,
Microbial communities and their relevance for ecosystem models: Decomposition as a case study, Soil Biology and Biochemistry, 42 (2010), 529-535.
doi: 10.1016/j.soilbio.2009.11.016. |
[19] |
H. V. Moeller and K. G. Peay, Competition-function tradeoffs in ectomycorrhizal fungi, PeerJ, 4 (2016), e2270.
doi: 10.7717/peerj.2270. |
[20] |
J. Oliva, M. Messal, L. Wendt and M. Elfstrand,
Quantitative interactions between the biocontrol fungus Phlebiopsis gigantea, the forest pathogen Heterobasidion annosum and the fungal community inhabiting Norway spruce stumps, Forest Ecology and Management, 402 (2017), 253-264.
doi: 10.1016/j.foreco.2017.07.046. |
[21] |
N. J. B. Plomley,
Formation of the colony in the fungus Chaetomium, Australian Journal of Biological Sciences, 12 (1959), 53-64.
doi: 10.1071/BI9590053. |
[22] |
J. I. Prosser, N. A. R. Gow and G. M. Gadd (eds.), Kinetics of filamentous growth and branching, in The Growing Fungus, Springer, Dordrecht, (1995), 301–318.
doi: 10.1007/978-0-585-27576-5_14. |
[23] |
J. I. Prosser and A. P. J. Trinci,
A model for hyphal growth and branching, Microbiology, 111 (1979), 153-164.
doi: 10.1099/00221287-111-1-153. |
[24] |
W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, available from: https://imagej.nih.gov/ij/ (cited 17 Dec 2018). Google Scholar |
[25] |
T. Stella, S. Covino, M. Čvančarová, A. Filipová, M. Petruccioli, A. D'Annibale and T. Cajthaml,
Bioremediation of long-term PCB-contaminated soil by white-rot fungi, Journal of Hazardous Materials, 324 (2017), 701-710.
doi: 10.1016/j.jhazmat.2016.11.044. |
[26] |
W. Thompson and A. D. M. Rayner,
Extent, development and function of mycelial cord systems in soil, Transactions of the British Mycological Society, 81 (1983), 333-345.
doi: 10.1016/S0007-1536(83)80085-0. |
[27] |
R. Toral and P. Colet, Introduction to master equations, in Stochastic Numerical Methods: An Introduction for Students and Scientists, Wiley-VCH, Weinheim, (2014), 235–260.
doi: 10.1002/9783527683147.ch8. |
[28] |
A. van der Wal, T. D. Geydan, T. W. Kuyper and W. de Boer,
A thready affair: Linking fungal diversity and community dynamics to terrestrial decomposition processes, FEMS Microbiology Reviews, 37 (2013), 477-494.
doi: 10.1111/1574-6976.12001. |
[29] |
V. Volpert and S. Petrovskii,
Reaction–diffusion waves in biology, Physics of Life Reviews, 6 (2009), 267-310.
doi: 10.1016/j.plrev.2009.10.002. |




Model | Advantages | Disadvantages | Predictability |
ODE | 1. Simplicity | 1. Non-spatial | 1. Low for even one-species |
2. Determinism | |||
3. Math. liability | |||
PDE | 1. Spatial | 1. Arbitrary mycelial presence (density threshold) 2. Challenging set-up of exact initial conditions 3. Challenging measurement-parameterisation 4. Cannot model each mycelium separately |
1. High for one-species 2. Low for three-species |
2. Determinism | |||
3. Math. liability |
Model | Advantages | Disadvantages | Predictability |
ODE | 1. Simplicity | 1. Non-spatial | 1. Low for even one-species |
2. Determinism | |||
3. Math. liability | |||
PDE | 1. Spatial | 1. Arbitrary mycelial presence (density threshold) 2. Challenging set-up of exact initial conditions 3. Challenging measurement-parameterisation 4. Cannot model each mycelium separately |
1. High for one-species 2. Low for three-species |
2. Determinism | |||
3. Math. liability |
[1] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[2] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[3] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[4] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[5] |
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 |
[6] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[7] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[8] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[9] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[10] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[11] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[12] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[13] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[14] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[15] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[16] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[17] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[18] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[19] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[20] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]