[1]
|
R. M. Anderson, Discussion: The Kermack-McKendrick epidemic threshold theorem, Bull. Math. Biol., 53 (1991), 3-32.
doi: 10.1016/s0092-8240(05)80039-4.
|
[2]
|
Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005.
|
[3]
|
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Philadelphia, 1994.
doi: 10.1137/1.9781611971262.
|
[4]
|
M. N. Burattini, E. Massad, F. A. B. Coutinho, R. S. Azevedo-Neto, R. X. Menezes and L. F. Lopes, A mathematical model of the impact of crack-cocaine use on the prevalence of HIV/AIDS among drug users, Math. Comput. Model., 28 (1998), 21-29.
doi: 10.1016/S0895-7177(98)00095-8.
|
[5]
|
A. Chekroun, M. N. Frioui, T. Kuniya and T. M. Touaoula, Global stability of an age-structured epidemic model with general Lyapunov functional, Math. Biosci. Eng., 16 (2019), 1525-1553.
doi: 10.3934/mbe.2019073.
|
[6]
|
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000.
|
[7]
|
S. Djilali, T. M. Touaoula and S. E. H. Miri, A heroin epidemic model: Very general non linear incidence, treat-age, and global stability, Acta Appl. Math., 152 (2017), 171-194.
doi: 10.1007/s10440-017-0117-2.
|
[8]
|
A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 459-482.
doi: 10.1017/S0308210507000455.
|
[9]
|
B. Fang, X. Li, M. Martcheva and L. M. Cai, Global stability for a heroin model with two distributed delays, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 715-733.
doi: 10.3934/dcdsb.2014.19.715.
|
[10]
|
B. Fang, X. Li, M. Martcheva and L. M. Cai, Global stability for a heroin model with age-dependent susceptibility, J. Syst. Sci. Complex., 28 (2015), 1243-1257.
doi: 10.1007/s11424-015-3243-9.
|
[11]
|
B. Fang, X. Li, M. Martcheva and L. M. Cai, Global asymptotic properties of a heroin epidemic model with treat-age, Appl. Math. Comput., 263 (2015), 315-331.
doi: 10.1016/j.amc.2015.04.055.
|
[12]
|
Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504.
|
[13]
|
G. Huang and A. Liu, A note on global stability for a heroin epidemic model with distributed delay, Appl. Math. Lett., 26 (2013), 687-691.
doi: 10.1016/j.aml.2013.01.010.
|
[14]
|
H. Inaba, Kermack and McKendrick revisited: The variable susceptibility model for infectious diseases, Japan J. Indust. Appl. Math., 18 (2001), 273-292.
doi: 10.1007/BF03168575.
|
[15]
|
W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700-721.
doi: 10.1098/rspa.1927.0118.
|
[16]
|
M. A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Noordhoff Ltd., Groningen, 1964.
|
[17]
|
W. T. Li, G. Lin, C. Ma and F. Y. Yang, Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467.
|
[18]
|
L. Liu and X. Liu, Mathematical analysis for an age-structured heroin epidemic model, Acta Appl. Math., 164 (2019), 193-217.
doi: 10.1007/s10440-018-00234-0.
|
[19]
|
J. Liu and T. Zhang, Global behaviour of a heroin epidemic model with distributed delays, Appl. Math. Lett., 24 (2011), 1685-1692.
doi: 10.1016/j.aml.2011.04.019.
|
[20]
|
L. Liu, X. Liu and J. Wang, Threshold dynamics of a delayed multigroup heroin epidemic model in heterogeneous populations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2615-2630.
doi: 10.3934/dcdsb.2016064.
|
[21]
|
X. Liu and J. Wang, Epidemic dynamics on a delayed multi-group heroin epidemic model with nonlinear incidence rate, J. Nonlinear Sci. Appl., 9 (2016), 2149-2160.
doi: 10.22436/jnsa.009.05.20.
|
[22]
|
P. Magal, Compact attractors for time-periodic age-structured population models, Electron. J. Differential Equations, 2001 (2001), 35pp.
|
[23]
|
C. C. McCluskey, Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes, Math. Biosci. Eng., 9 (2012), 819-841.
doi: 10.3934/mbe.2012.9.819.
|
[24]
|
G. Mulone and B. Straughan, A note on heroin epidemics, Math. Biosci., 218 (2009), 138-141.
doi: 10.1016/j.mbs.2009.01.006.
|
[25]
|
G. P. Samanta, Dynamic behaviour for a nonautonomous heroin epidemic model with time delay, J. Appl. Math. Comput., 35 (2011), 161-178.
doi: 10.1007/s12190-009-0349-z.
|
[26]
|
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118, American Mathematical Society, Providence, RI, 2011.
|
[27]
|
H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068.
|
[28]
|
H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations, 3 (1990), 1035-1066.
|
[29]
|
W. Wang and X. Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890.
|
[30]
|
Z. C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377.
|
[31]
|
P. Weng and X. Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020.
|
[32]
|
E. White and C. Comiskey, Heroin epidemics, treatment and ODE modelling, Math. Biosci., 208 (2007), 312-324.
doi: 10.1016/j.mbs.2006.10.008.
|
[33]
|
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Anal., 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012.
|
[34]
|
J. Yang, X. Li and F. Zhang, Global dynamics of a heroin epidemic model with age structure and nonlinear incidence, Int. J. Biomath., 9 (2016), 20pp.
doi: 10.1142/S1793524516500339.
|
[35]
|
L. Zhang, B. Li and J. Shang, Stability and travelling waves for a time-delayed population system with stage structure, Nonlinear Anal. Real World Appl., 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007.
|