-
Previous Article
Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps
- DCDS-B Home
- This Issue
-
Next Article
Mathematical analysis of an age structured heroin-cocaine epidemic model
Spreading speeds for a class of non-local convolution differential equation
1. | Department of Mathematics, Jinan University, Guangzhou 510632, China |
2. | School of Mathematics and Big Data, Foshan University, Foshan 528000, China |
The spatial spreading dynamics is considered for a class of convolution differential equation resulting from physical and biological problems. It is shown that this kind of equation with monostable structure admits a spreading speed, even when the nonlinear reaction terms without monotonicity. The upward convergence of spreading speed is also established under appropriate conditions.
References:
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer, Berlin, 1975, 5–49.
doi: 10.1007/BFb0070595. |
[2] |
D. G. Aronson and H. F. Weinberger,
Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[3] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[4] |
X. F. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[5] |
Z. X. Chen, B. Ermentrout and B. Mcleod,
Traveling fronts for a class of non-local convolution differential quations, Appl. Anal., 64 (1997), 235-253.
doi: 10.1080/00036819708840533. |
[6] |
O. Diekmann,
Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33 (1979), 58-73.
doi: 10.1016/0022-0396(79)90080-9. |
[7] |
O. Diekmann,
Thresholds and travelling waves for the geographical spread of an infection, J. Math. Biol., 6 (1978), 109-130.
doi: 10.1007/BF02450783. |
[8] |
O. Diekmann and H. G. Kapper,
On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.
doi: 10.1016/0362-546X(78)90015-9. |
[9] |
W. Ding and X. Liang,
Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.
doi: 10.1137/140958141. |
[10] |
B. Ermentrout and J. McLeod,
Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.
doi: 10.1017/S030821050002583X. |
[11] |
J. Fang and X.-Q. Zhao,
Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226.
doi: 10.1016/j.jde.2010.01.009. |
[12] |
J. Fang and X.-Q. Zhao,
Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.
doi: 10.1088/0951-7715/24/11/002. |
[13] |
C. Gomez, H. Prado and S. Trofimchuk,
Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.
doi: 10.1016/j.jmaa.2014.05.064. |
[14] |
S. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[15] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[16] |
Y. Jin and X.-Q. Zhao,
Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.
doi: 10.1088/0951-7715/22/5/011. |
[17] |
B. T. Li, M. A. Lewis and H. F. Weinberger,
Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.
doi: 10.1007/s00285-008-0175-1. |
[18] |
X. Liang and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[19] |
G. Lin, W. T. Li and S. G. Ruan,
Spreading speeds and traveling waves in competitive recursion systems, J. Math. Biol., 62 (2011), 165-201.
doi: 10.1007/s00285-010-0334-z. |
[20] |
A. De Masi, T. Gobron and E. Presutti,
Travelling fronts in a non-local evolution equation, Arch. Rational Mech. Anal., 132 (1995), 143-205.
doi: 10.1007/BF00380506. |
[21] |
J. Medlock and M. Kot,
Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.
doi: 10.1016/S0025-5564(03)00041-5. |
[22] |
K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅱ, in Biological Growth and Spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980,296–309.
doi: 10.1007/978-3-642-61850-5_28. |
[23] |
H. R. Thieme,
Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.
doi: 10.1515/crll.1979.306.94. |
[24] |
H. R. Thieme,
Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.
doi: 10.1007/BF00279720. |
[25] |
H. R. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[26] |
H. F. Weinberger, K. Kawasaki and N. Shigesada,
Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), 387-411.
doi: 10.1007/s00285-008-0168-0. |
[27] |
S. L. Wu, W. T. Li and S. Y. Liu,
Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151.
doi: 10.1016/j.nonrwa.2008.10.012. |
[28] |
C. Wu, D. Xiao and X.-Q. Zhao, Asymptotic pattern of a migratory and nonmonotone population model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1171-1195.
doi: 10.3934/dcdsb.2014.19.1171. |
[29] |
C. Wu, Y. Wang and X. Zou,
Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.
doi: 10.1016/j.jde.2019.05.019. |
[30] |
Z. Xu,
Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 30 (2018), 473-499.
doi: 10.1007/s10884-016-9555-1. |
[31] |
Z. Xu and D. Xiao,
Regular traveling waves for a nonlocal diffusion equation, J. Differential Equations, 258 (2015), 191-223.
doi: 10.1016/j.jde.2014.09.008. |
[32] |
Z. Xu and C. Wu,
Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.
doi: 10.1016/j.jmaa.2018.02.036. |
[33] |
T. Yi, Y. Chen and J. Wu,
Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Differential Equations, 254 (2013), 3538-3572.
doi: 10.1016/j.jde.2013.01.031. |
show all references
References:
[1] |
D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, 446, Springer, Berlin, 1975, 5–49.
doi: 10.1007/BFb0070595. |
[2] |
D. G. Aronson and H. F. Weinberger,
Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5. |
[3] |
P. W. Bates, P. C. Fife, X. Ren and X. Wang,
Traveling waves in a convolution model for phase transition, Arch. Rational Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037. |
[4] |
X. F. Chen,
Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differential Equations, 2 (1997), 125-160.
|
[5] |
Z. X. Chen, B. Ermentrout and B. Mcleod,
Traveling fronts for a class of non-local convolution differential quations, Appl. Anal., 64 (1997), 235-253.
doi: 10.1080/00036819708840533. |
[6] |
O. Diekmann,
Run for your life. A note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33 (1979), 58-73.
doi: 10.1016/0022-0396(79)90080-9. |
[7] |
O. Diekmann,
Thresholds and travelling waves for the geographical spread of an infection, J. Math. Biol., 6 (1978), 109-130.
doi: 10.1007/BF02450783. |
[8] |
O. Diekmann and H. G. Kapper,
On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.
doi: 10.1016/0362-546X(78)90015-9. |
[9] |
W. Ding and X. Liang,
Principal eigenvalues of generalized convolution operators on the circle and spreading speeds of noncompact evolution systems in periodic media, SIAM J. Math. Anal., 47 (2015), 855-896.
doi: 10.1137/140958141. |
[10] |
B. Ermentrout and J. McLeod,
Existence and uniqueness of travelling waves for a neural network, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 461-478.
doi: 10.1017/S030821050002583X. |
[11] |
J. Fang and X.-Q. Zhao,
Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226.
doi: 10.1016/j.jde.2010.01.009. |
[12] |
J. Fang and X.-Q. Zhao,
Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.
doi: 10.1088/0951-7715/24/11/002. |
[13] |
C. Gomez, H. Prado and S. Trofimchuk,
Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 420 (2014), 1-19.
doi: 10.1016/j.jmaa.2014.05.064. |
[14] |
S. Hsu and X.-Q. Zhao,
Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789.
doi: 10.1137/070703016. |
[15] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers,
The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1. |
[16] |
Y. Jin and X.-Q. Zhao,
Spatial dynamics of a periodic population model with dispersal, Nonlinearity, 22 (2009), 1167-1189.
doi: 10.1088/0951-7715/22/5/011. |
[17] |
B. T. Li, M. A. Lewis and H. F. Weinberger,
Existence of traveling waves for integral recursions with nonmonotone growth functions, J. Math. Biol., 58 (2009), 323-338.
doi: 10.1007/s00285-008-0175-1. |
[18] |
X. Liang and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for monotone semiflows with application, Comm. Pure Appl. Math., 60 (2007), 1-40.
doi: 10.1002/cpa.20154. |
[19] |
G. Lin, W. T. Li and S. G. Ruan,
Spreading speeds and traveling waves in competitive recursion systems, J. Math. Biol., 62 (2011), 165-201.
doi: 10.1007/s00285-010-0334-z. |
[20] |
A. De Masi, T. Gobron and E. Presutti,
Travelling fronts in a non-local evolution equation, Arch. Rational Mech. Anal., 132 (1995), 143-205.
doi: 10.1007/BF00380506. |
[21] |
J. Medlock and M. Kot,
Spreading disease: Integro-differential equations old and new, Math. Biosci., 184 (2003), 201-222.
doi: 10.1016/S0025-5564(03)00041-5. |
[22] |
K. Schumacher, Travelling-front solutions for integro-differential equations. Ⅱ, in Biological Growth and Spread, Lecture Notes in Biomath., 38, Springer, Berlin-New York, 1980,296–309.
doi: 10.1007/978-3-642-61850-5_28. |
[23] |
H. R. Thieme,
Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94-121.
doi: 10.1515/crll.1979.306.94. |
[24] |
H. R. Thieme,
Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187.
doi: 10.1007/BF00279720. |
[25] |
H. R. Thieme and X.-Q. Zhao,
Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[26] |
H. F. Weinberger, K. Kawasaki and N. Shigesada,
Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions, J. Math. Biol., 57 (2008), 387-411.
doi: 10.1007/s00285-008-0168-0. |
[27] |
S. L. Wu, W. T. Li and S. Y. Liu,
Oscillatory waves in reaction-diffusion equations with nonlocal delay and crossing-monostability, Nonlinear Anal. Real World Appl., 10 (2009), 3141-3151.
doi: 10.1016/j.nonrwa.2008.10.012. |
[28] |
C. Wu, D. Xiao and X.-Q. Zhao, Asymptotic pattern of a migratory and nonmonotone population model, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1171-1195.
doi: 10.3934/dcdsb.2014.19.1171. |
[29] |
C. Wu, Y. Wang and X. Zou,
Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment, J. Differential Equations, 267 (2019), 4890-4921.
doi: 10.1016/j.jde.2019.05.019. |
[30] |
Z. Xu,
Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 30 (2018), 473-499.
doi: 10.1007/s10884-016-9555-1. |
[31] |
Z. Xu and D. Xiao,
Regular traveling waves for a nonlocal diffusion equation, J. Differential Equations, 258 (2015), 191-223.
doi: 10.1016/j.jde.2014.09.008. |
[32] |
Z. Xu and C. Wu,
Monostable waves in a class of non-local convolution differential equation, J. Math. Anal. Appl., 462 (2018), 1205-1224.
doi: 10.1016/j.jmaa.2018.02.036. |
[33] |
T. Yi, Y. Chen and J. Wu,
Unimodal dynamical systems: Comparison principles, spreading speeds and travelling waves, J. Differential Equations, 254 (2013), 3538-3572.
doi: 10.1016/j.jde.2013.01.031. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[3] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[4] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[5] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[6] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003 |
[7] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
[8] |
Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233 |
[9] |
Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022 |
[10] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[11] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[12] |
Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021064 |
[13] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[14] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[15] |
Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021073 |
[16] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[17] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[18] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[19] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[20] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]