- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Almost sure exponential stabilization and suppression by periodically intermittent stochastic perturbation with jumps
A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow
School of Mathematics, South China University of Technology, Guangzhou 510641, China |
In this paper, we establish a new blowup criterion for the strong solution to the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in a bounded domain $ \Omega\subset\mathbb{R}^{3} $. Specifically, we obtain the blowup criterion in terms of $ \|P\|_{L^\infty_t BMO_{x}} $ and $ \|\nabla d\|_{L^s_t L^\infty_x} $, for any $ s>3 $. The appearance of vacuum could be allowed.
References:
[1] |
P. Acquistapace,
On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.
doi: 10.1007/BF01759640. |
[2] |
Y. Chen, X. Hou and L. Zhu,
A new blowup criterion for strong solutions to the three-dimensional compressible magnetohydrodynamic equations with vacuum in a bounded domain, Math. Methods Appl. Sci., 40 (2017), 5526-5538.
doi: 10.1002/mma.4407. |
[3] |
Y. Chen and M. Zhang,
A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions, Kinet. Relat. Models, 9 (2016), 429-441.
doi: 10.3934/krm.2016001. |
[4] |
S. Ding, J. Lin, C. Wang and H. Wen,
Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.
doi: 10.3934/dcds.2012.32.539. |
[5] |
S. Ding, C. Wang and H. Wen,
Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.
doi: 10.3934/dcdsb.2011.15.357. |
[6] |
J. Gao, Q. Tao and Z.-A. Yao,
Long-time behavior of solution for the compressible nematic liquid crystal flows in $\Bbb{R}^3$, J. Differential Equations, 261 (2016), 2334-2383.
doi: 10.1016/j.jde.2016.04.033. |
[7] |
J. Gao, Q. Tao and Z.-A. Yao,
A blowup criterion for the compressible nematic liquid crystal flows in dimension two, J. Math. Anal. Appl., 415 (2014), 33-52.
doi: 10.1016/j.jmaa.2014.01.039. |
[8] |
T. Huang, C. Wang and H. Wen,
Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.
doi: 10.1016/j.jde.2011.07.036. |
[9] |
T. Huang, C. Wang and H. Wen,
Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204 (2012), 285-311.
doi: 10.1007/s00205-011-0476-1. |
[10] |
X. Huang and Y. Wang,
A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363-1375.
doi: 10.1002/mma.2689. |
[11] |
F. Jiang, S. Jiang and D. Wang,
On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.
doi: 10.1016/j.jfa.2013.07.026. |
[12] |
J. Lin, B. Lai and C. Wang,
Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.
doi: 10.1137/15M1007665. |
[13] |
S. Liu and S. Wang,
A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017), 39-62.
doi: 10.1007/s10440-016-0067-0. |
[14] |
X.-G. Liu and J. Qing,
Globally weak solutions to the flow of compressible liquid crystals system, Discrete Contin. Dyn. Syst., 33 (2013), 757-788.
doi: 10.3934/dcds.2013.33.757. |
[15] |
Y. Liu, S. Zheng, H. Li and S. Liu,
Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 37 (2017), 3921-3938.
doi: 10.3934/dcds.2017165. |
[16] |
Y. Sun, C. Wang and Z. Zhang,
A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.
doi: 10.1016/j.matpur.2010.08.001. |
[17] |
D. Wang and C. Yu,
Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012), 881-915.
doi: 10.1007/s00205-011-0488-x. |
show all references
References:
[1] |
P. Acquistapace,
On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269.
doi: 10.1007/BF01759640. |
[2] |
Y. Chen, X. Hou and L. Zhu,
A new blowup criterion for strong solutions to the three-dimensional compressible magnetohydrodynamic equations with vacuum in a bounded domain, Math. Methods Appl. Sci., 40 (2017), 5526-5538.
doi: 10.1002/mma.4407. |
[3] |
Y. Chen and M. Zhang,
A new blowup criterion for strong solutions to a viscous liquid-gas two-phase flow model with vacuum in three dimensions, Kinet. Relat. Models, 9 (2016), 429-441.
doi: 10.3934/krm.2016001. |
[4] |
S. Ding, J. Lin, C. Wang and H. Wen,
Compressible hydrodynamic flow of liquid crystals in 1-D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.
doi: 10.3934/dcds.2012.32.539. |
[5] |
S. Ding, C. Wang and H. Wen,
Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.
doi: 10.3934/dcdsb.2011.15.357. |
[6] |
J. Gao, Q. Tao and Z.-A. Yao,
Long-time behavior of solution for the compressible nematic liquid crystal flows in $\Bbb{R}^3$, J. Differential Equations, 261 (2016), 2334-2383.
doi: 10.1016/j.jde.2016.04.033. |
[7] |
J. Gao, Q. Tao and Z.-A. Yao,
A blowup criterion for the compressible nematic liquid crystal flows in dimension two, J. Math. Anal. Appl., 415 (2014), 33-52.
doi: 10.1016/j.jmaa.2014.01.039. |
[8] |
T. Huang, C. Wang and H. Wen,
Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.
doi: 10.1016/j.jde.2011.07.036. |
[9] |
T. Huang, C. Wang and H. Wen,
Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Ration. Mech. Anal., 204 (2012), 285-311.
doi: 10.1007/s00205-011-0476-1. |
[10] |
X. Huang and Y. Wang,
A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363-1375.
doi: 10.1002/mma.2689. |
[11] |
F. Jiang, S. Jiang and D. Wang,
On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.
doi: 10.1016/j.jfa.2013.07.026. |
[12] |
J. Lin, B. Lai and C. Wang,
Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.
doi: 10.1137/15M1007665. |
[13] |
S. Liu and S. Wang,
A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017), 39-62.
doi: 10.1007/s10440-016-0067-0. |
[14] |
X.-G. Liu and J. Qing,
Globally weak solutions to the flow of compressible liquid crystals system, Discrete Contin. Dyn. Syst., 33 (2013), 757-788.
doi: 10.3934/dcds.2013.33.757. |
[15] |
Y. Liu, S. Zheng, H. Li and S. Liu,
Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows, Discrete Contin. Dyn. Syst., 37 (2017), 3921-3938.
doi: 10.3934/dcds.2017165. |
[16] |
Y. Sun, C. Wang and Z. Zhang,
A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.
doi: 10.1016/j.matpur.2010.08.001. |
[17] |
D. Wang and C. Yu,
Global weak solution and large-time behavior for the compressible flow of liquid crystals, Arch. Ration. Mech. Anal., 204 (2012), 881-915.
doi: 10.1007/s00205-011-0488-x. |
[1] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[2] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[3] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[4] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[5] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[6] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[7] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[8] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[9] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[10] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[11] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
[12] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[13] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[14] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[15] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[16] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[17] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[18] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[19] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[20] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]