December  2020, 25(12): 4575-4583. doi: 10.3934/dcdsb.2020113

Differentiable solutions of the Feigenbaum-Kadanoff-Shenker equation

Numerical Simulation Key Laboratory of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, China

* Corresponding author: Yong-Guo Shi

Received  May 2019 Revised  December 2019 Published  March 2020

Fund Project: The author is supported by Scientific Research Fund of SiChuan Provincial Education Department (18ZA0274)

The Feigenbaum-Kadanoff-Shenker equation for universal scaling in circle maps characterizes the quasiperiodic route to chaos. In this paper, using two different iterative methods, we construct all strictly decreasing continuous solutions. Furthermore, we present respectively the corresponding conditions to guarantee $ C^1 $ smoothness of those continuous solutions.

Citation: Yong-Guo Shi. Differentiable solutions of the Feigenbaum-Kadanoff-Shenker equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4575-4583. doi: 10.3934/dcdsb.2020113
References:
[1]

L. Berg, A piecewise linear solution of Feigenbaum' s equation, Aequationes Math., 76 (2008), 197-199.  doi: 10.1007/s00010-007-2925-3.  Google Scholar

[2]

K. M. BriggsT. W. Dixon and G. Szekeres, Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 347-357.  doi: 10.1142/S0218127498000206.  Google Scholar

[3]

K. M. Briggs, Feigenbaum Scaling in Discrete Dynamical Systems, Ph.D thesis, University of Melbourne, 1997. Google Scholar

[4]

M. Campanino and H. Epstein, On the existence of Feigenbaum's fixed point, Commun. Math. Phys., 79 (1981), 261-302.  doi: 10.1007/BF01942063.  Google Scholar

[5]

J.-P. Eckmann and H. Epstein, On the existence of fixed points of the composition operator for circle maps, Commun. Math. Phys., 107 (1986), 213-231.  doi: 10.1007/BF01209392.  Google Scholar

[6]

M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys., 19 (1978), 25-52.  doi: 10.1007/BF01020332.  Google Scholar

[7]

M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys., 21 (1979), 669-706.  doi: 10.1007/BF01107909.  Google Scholar

[8]

M. J. FeigenbaumL. P. Kadanoff and S. J. Shenker, Quasiperiodicity in dissipative systems: A renormalization group analysis, Phys. D, 5 (1982), 370-386.  doi: 10.1016/0167-2789(82)90030-6.  Google Scholar

[9]

J. Groeneveld, On constructing complete solution classes of the Cvitanović-Feigenbaum equation, Phys. A, 138 (1986), 137-166.  doi: 10.1016/0378-4371(86)90177-9.  Google Scholar

[10]

M. Kuczma, On the functional equation $\varphi ^{n}(x) = g(x)$, Ann. Polon. Math., 11 (1961), 161-175.  doi: 10.4064/ap-11-2-161-175.  Google Scholar

[11]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.  Google Scholar

[12]

M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, in Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9781139086639.  Google Scholar

[13]

O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N. S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[14]

O. E. Lanford III, Functional equations for circle homeomorphisms with golden ratio rotation number, J. Statist. Phys., 34 (1984), 57-73.  doi: 10.1007/BF01770349.  Google Scholar

[15]

B. D. Mestel, Computer Assisted Proof of Universality for Cubic Critical Maps of the Circle with Golden Mean Rotation Number, Ph.D thesis, University of Warwick, 1985. Google Scholar

[16]

M. Nauenberg, On the fixed points for circle maps, Phys. Lett. A, 92 (1982), 319-320.  doi: 10.1016/0375-9601(82)90898-2.  Google Scholar

[17]

J. Stephenson and Y. Wang, Relationships between the solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 37-39.  doi: 10.1016/0893-9659(91)90031-P.  Google Scholar

[18]

J. Stephenson and Y. Wang, Relationships between eigenfunctions associated with solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 53-56.  doi: 10.1016/0893-9659(91)90035-T.  Google Scholar

[19]

Y. Tang, $C^\infty$ even solutions of Feigenbaum functional equation, Acta Math. Sinica (Chin. Ser.), 40 (1997), 253-258.   Google Scholar

[20]

L. Yang and J. Z. Zhang, The second type of Feigenbaum's functional equations, Sci. Sinica Ser. A, 29 (1986), 1252-1262.   Google Scholar

show all references

References:
[1]

L. Berg, A piecewise linear solution of Feigenbaum' s equation, Aequationes Math., 76 (2008), 197-199.  doi: 10.1007/s00010-007-2925-3.  Google Scholar

[2]

K. M. BriggsT. W. Dixon and G. Szekeres, Analytic solutions of the Cvitanović-Feigenbaum and Feigenbaum-Kadanoff-Shenker equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 347-357.  doi: 10.1142/S0218127498000206.  Google Scholar

[3]

K. M. Briggs, Feigenbaum Scaling in Discrete Dynamical Systems, Ph.D thesis, University of Melbourne, 1997. Google Scholar

[4]

M. Campanino and H. Epstein, On the existence of Feigenbaum's fixed point, Commun. Math. Phys., 79 (1981), 261-302.  doi: 10.1007/BF01942063.  Google Scholar

[5]

J.-P. Eckmann and H. Epstein, On the existence of fixed points of the composition operator for circle maps, Commun. Math. Phys., 107 (1986), 213-231.  doi: 10.1007/BF01209392.  Google Scholar

[6]

M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations, J. Statist. Phys., 19 (1978), 25-52.  doi: 10.1007/BF01020332.  Google Scholar

[7]

M. J. Feigenbaum, The universal metric properties of nonlinear transformations, J. Statist. Phys., 21 (1979), 669-706.  doi: 10.1007/BF01107909.  Google Scholar

[8]

M. J. FeigenbaumL. P. Kadanoff and S. J. Shenker, Quasiperiodicity in dissipative systems: A renormalization group analysis, Phys. D, 5 (1982), 370-386.  doi: 10.1016/0167-2789(82)90030-6.  Google Scholar

[9]

J. Groeneveld, On constructing complete solution classes of the Cvitanović-Feigenbaum equation, Phys. A, 138 (1986), 137-166.  doi: 10.1016/0378-4371(86)90177-9.  Google Scholar

[10]

M. Kuczma, On the functional equation $\varphi ^{n}(x) = g(x)$, Ann. Polon. Math., 11 (1961), 161-175.  doi: 10.4064/ap-11-2-161-175.  Google Scholar

[11]

M. Kuczma, Functional Equations in a Single Variable, Państwowe Wydawnictwo Naukowe, Warszawa, 1968.  Google Scholar

[12]

M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, in Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University Press, Cambridge, 1990. doi: 10.1017/CBO9781139086639.  Google Scholar

[13]

O. E. Lanford III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N. S.), 6 (1982), 427-434.  doi: 10.1090/S0273-0979-1982-15008-X.  Google Scholar

[14]

O. E. Lanford III, Functional equations for circle homeomorphisms with golden ratio rotation number, J. Statist. Phys., 34 (1984), 57-73.  doi: 10.1007/BF01770349.  Google Scholar

[15]

B. D. Mestel, Computer Assisted Proof of Universality for Cubic Critical Maps of the Circle with Golden Mean Rotation Number, Ph.D thesis, University of Warwick, 1985. Google Scholar

[16]

M. Nauenberg, On the fixed points for circle maps, Phys. Lett. A, 92 (1982), 319-320.  doi: 10.1016/0375-9601(82)90898-2.  Google Scholar

[17]

J. Stephenson and Y. Wang, Relationships between the solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 37-39.  doi: 10.1016/0893-9659(91)90031-P.  Google Scholar

[18]

J. Stephenson and Y. Wang, Relationships between eigenfunctions associated with solutions of Feigenbaum's equation, Appl. Math. Lett., 4 (1991), 53-56.  doi: 10.1016/0893-9659(91)90035-T.  Google Scholar

[19]

Y. Tang, $C^\infty$ even solutions of Feigenbaum functional equation, Acta Math. Sinica (Chin. Ser.), 40 (1997), 253-258.   Google Scholar

[20]

L. Yang and J. Z. Zhang, The second type of Feigenbaum's functional equations, Sci. Sinica Ser. A, 29 (1986), 1252-1262.   Google Scholar

Figure 1.  $ g(\alpha^2)=a=\alpha^2=1/4 $
Figure 2.  $ g(\alpha^2)=a=1/2 $, $ \alpha^2=1/4 $
[1]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[2]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[3]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[6]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[9]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[10]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Andrea Malchiodi. Perturbative techniques for the construction of spike-layers. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3767-3787. doi: 10.3934/dcds.2020055

[13]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[14]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[15]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

[18]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[19]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[20]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (112)
  • HTML views (314)
  • Cited by (1)

Other articles
by authors

[Back to Top]